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1. INTRODUCTION
Spontaneous parametric down-conversion [1] (SPDC) 

is the effect of the generation of a pair of photons as a result 
of three-wave interaction in a quadratic nonlinear medium 
of the pump wave and fluctuations of the electromagnetic 
vacuum. At the same time, the laws of conservation of energy 
and momentum are fulfilled, which can be written as:

	
ω ω + ω

+k k k

  

  

=
= ,

p s i

p s i
	 (1)

where ω , ,p s i  and k , ,p s i  are the frequency and wave vector 
of pump waves (p), signal (s) and idle (i) waves respectively.

In the case of the first type of SPDC, which is considered 
in this paper, pumping is a wave of the same type, and the 
signal and idle waves are of a different type. In uniaxial crys-
tals, the signal and optical waves are either ordinary or ex-
traordinary, and in biaxial crystals they are either fast or slow. 

The SPDC effect occupies one of  the central places 
in modern quantum optical technologies and research [2, 3]. 
Thus, the SPDC effect is used in metrology for the non-etal-
on determination of the quantum efficiency [4] of single pho-
ton detectors [5-7], based on the SPDC, 
methods for measuring distances with accuracy above the 
standard quantum limit are being developed [8]. SPDC 

occupies a special place in quantum technologies [9]. The 
SPDC sources of photon pairs entangled by polarization are 
the bricks for the realization of multiphoton entangled quan-
tum states. This method was used for the first time to obtain 
the Greenberger–Horn–Zeilinger (HHZ) state [10] of three 
polarization-entangled photons, and later it was possible 
to obtain the maximally entangled quantum state of 12 pho-
tons, each of which was in a separate spatial mode [11].

One of the key schemes for generating polarization-entan-
gled photon pairs is a two-crystal scheme [12] using SPDC 
with the first type of synchronism in a non-collisional mode. 
The non-collinear mode has an advantage over the collinear 
mode (for example, when used in crystals with a regular do-
main structure [13,14]) in that it allows controlling the fre-
quency [15-17] and angular [18, 19] degrees of freedom of the 
quantum state due to a change in the scattering angle [20]. 
Quantum states with a high degree of quantum entanglement 
have also been obtained using the non-collinear mode [21-
23]. However, in the non-collinear mode, the question about 
the direction of polarization of the wave, unlike the collinear 
mode, becomes non-trivial.

In the non-collinear geometry of the SPDC, the wave 
vectors ks  and ki  are not parallel to kp, and the direction 
of oscillations of the vectors E and D of the signal and idle 
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waves depend on the direction of scattering, which is  the 
phenomenon of deviation of the polarization of the SPDC. 
If for “ordinary” nonlinear optics the phenomenon of polar-
ization deviation does not lead to qualitative changes in the 
process of parametric generation, then in the case of SPDC 
it becomes significant when trying to build two-crystal cir-
cuits with a high degree of entanglement of the quantum po-
larization state [24,25]. The direction of oscillations of vec-
tors E and D in uniaxial crystals has been studied in the lit-
erature [26], however, for biaxial crystals, as far as we know, 
the question of polarization SPDC deviation has not been 
studied. The main attention was paid to the numerical solu-
tion of the Fresnel equation and the determination of the 
refractive index in biaxial crystals to calculate the synchro-
nism of  second harmonic generation [27-29] and SPDC 
[30]. Note that the interest in biaxial crystals is determined 
by the fact that in some biaxial crystals, the value of effec-
tive nonlinearity exceeds the value of effective nonlineari-
ty in uniaxial crystals. For example, in a BiBO crystal, the 
value of effective nonlinearity is twice higher (≈ 3.5 pm/V) 
than in BBO (≈ 1.75 pm/V) [31] for a frequency-degenerate 
SPDC with pumping at a wavelength of 405 nm. The direc-
tion of the polarization plane of the SPDC radiation plays 
a special role in the new field of phantom polarimetry [32], 
which uses SPDC sources operating in a non-collinear mode 
[33,34]. Deviation of the radiation polarization plane in the 
object arm in the phantom polarimeter will lead to a system-
atic error in the determination of the azimuth angle of the 
anisotropy of the object under study.

The purpose of this work is to obtain an expression for 
the deviation of the direction of oscillations of the vector 
D of the SPDC radiation in biaxial crystals and to determine 
the degree of influence of polarization deviation on the en-
tanglement of quantum states generated by a two-crystal cir-
cuit using biaxial crystals. 

In section 2, the expressions for the direction of oscilla-
tions of the vectors E and D of natural waves in birefringent 
crystals are given. We proceeded from the fact that the di-
rection of oscillation of the vector D of its own wave is the 
semi-axis of the ellipse section of an ellipsoid of wave normal 
with a plane perpendicular to the vector k. The solution in-
cludes both the case of uniaxial and the case of biaxial crys-
tals. In section 3, the expressions for the quantum polariza-
tion state of the SPDC radiation in collinear and non-collin-
ear modes are given. 

In section 4, numerical estimates of the effect of the po-
larization deviation of the SPDC in a two-crystal scheme for 

a biaxial BiBO crystal are given and a comparison is made 
for the case of  a  uniaxial BBO crystal. It  is  shown that 
in a two-crystal scheme using BiBO crystals, the coupling 
parameter is due to the phenomenon of polarization devia-
tion is deteriorating, and conditions have been identified un-
der which the deterioration of cohesion can be fully restored. 
In section 5, the results of the work are summarized.

2. POLARIZATION OF LIGHT IN BIAXIAL 
CRYSTALS

To find the direction of oscillations of the vector D and 
determine the value of the refractive index, we will use the 
equation of the ellipsoid of wave normals [35-37] 

	 + +
ε ε ε

2 2 2
= 1,

x y z

X Y Z 	 (2)

where ε , ,x y z  — are the main components of the dielectric 
constant tensor, { , , }X Y Z   — is  a  crystal-physical coordi-
nate system in which the dielectric permeability tensor has 
a diagonal appearance. To find the direction of oscillation 
of vector D is a crystal-physical coordinate system in which 
the dielectric permeability tensor has a diagonal appearance. 
To find the direction of oscillation of vector = { , , }X Y Zk k k k . 
The cross section is an ellipse, the main semi-axes of which 
set the direction of vibrations D, and their lengths are equal 
to the values of the refractive indices of the corresponding 
waves.

The equation of the secant plane has the form 

	 ( ), = = 0.X Y ZXk Yk Zk+ +k r 	 (3)

We  carry out the procedure for finding the direction 
of rotation of the vector D and the refractive indices using 
the affine transformation of the system of coordinates [38], 
in which the ellipsoid of wave normal lines will have the form 
of a sphere of unit radius. To do this, we will make the fol-
lowing substitution of variables →( , , ) ( , , )X Y Z u v w : 

	
2 2 2

= / , = / , = / ,

= 1.
x y zu X v Y w Z

u v w

ε ε ε

+ +
	 (4)

In this case, the equation of the secant plane in the new 
coordinate system will have the form

	 ε + ε + ε = 0.x y zX Y Zk u k v k w 	 (5)
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The vector perpendicular to the secant plane, in the new 
coordinate system can be written as

	 ( ) ( )κ ε ε ε κ κ κ= , , = , , .x y zX Y Z u v wk k k 	 (6)

In the case of  +2 2 = 0X Yk k , ≠ 0Zk  in an anisotropic me-
dium, two eigenwaves with directions of oscillation of the 
vector D can propagate along the axes X  and Y  and with 
refractive indices of  ε x  and εy  respectively.

Considering the case of  + ≠2 2 0X Yk k . Let’s  find the 
equation of  the secant figure in parametric form. For the 
case of the coordinate system { , , }u v w  the secant figure will 
be a circle of unit radius lying in a plane perpendicular to κ. 
It is not difficult to check by direct substitution that the two 
following vectors are perpendicular to k and each other:

	
( )( )

( )

 κ
 −κ 

κ + κ   
 κ ×  ×

κ κ + κ κ + κ + κ

 κ κ 
 × κ κ 
 − κ + κ
 

1 2 2

1
2 2 2 2 2 2

2 2

1= ,
0

1= =

.

v

u
u v

u v u v w

u w

v w

u v

e

e
e 	 (7)

Thus, in the coordinate system { , , }u v w  the equation of the 
secant figure in parametric form
is written as

	 { , , } 1 2= sin cos ,u v w s s+r e e 	 (8)

where s is the parameter, taking values from 0 to  π2 . In the 
original notation 

	
( )( )

( )

1 2 2

2 2 2 2 2 2

2 2

1= ,
0

1=

.

Y y

X x
X x Y y

X x Y y X x Y y Z z

X Z x z

Y Z y z

X x Y y

k

k
k k

k k k k k

k k

k k

k k

 ε
 
 − ε
 ε + ε   

×
ε + ε ε + ε + ε

 ε ε 
 × ε ε 
 − ε + ε  

e

e 	 (9)

In  the original notation →{ , , } { , , }u v w X Y Z , 1 1→e f , 

2 2→e f  we have

	 ( )( )

( )
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2 2 2 2 2 2

2 2
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0
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.
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X
X x Y y
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k
k
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ε
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 
ε 
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f

f 	 (10)

In this case, the equation of the ellipse obtained as a re-
sult of the section of the Fresnel ellipsoid with a plane per-
pendicular to k in the coordinate system {X, Y, Z} has the 
form

	 ( ) 1 2, , = cos sin ,X Y Z s s+r f f 	 (11)

where s is a parameter taking values from 0 to  π2 . The direc-
tions of its main semi-axles determine the direction of oscil-
lations of the vector D, and the lengths of the semi-axles are 
equal to the corresponding refractive indices.

In uniaxial crystals, ε ε=x y, and 1 2( , ) = 0f f , i.e. the vec-
tors f1 and f2 are the semi-axes of the ellipse and set the direc-
tions of oscillation of the vector D, and their lengths deter-
mine the refractive indices. It is also noted that the vector f1, 
which determines the direction of oscillations of the vector 
D and the refractive index for an ordinary wave, lies in the 
(XY) plane. At the same time, its length does not depend 
on the direction k, which coincides with the known result 
for showing the refraction of an ordinary wave in birefrin-
gent crystals. 

However, in biaxial crystals, in which all the three main 
components of the dielectric constant tensor are not equal 
to each other, (f1, f2) ≠ 0, and the main semi-axes of the el-
lipse are determined by the expression (11), r(s1,2,3,4) at pa-
rameter values 

	
( )
2 2

1 2
1

1 2

2 1

3,4 1,2

1= arctg ,
4 2 ,

= / 2,
= ,

s

s s
s t

−π −

+ π
+ π

f f

f f

	 (12)

in this case, r(s3,4) and r(s1,2) are respectively equal in modu-
lus and oppositely directed.
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It is noteworthy that in the coordinate system {X, Y, Z} 
the tensor εij is diagonalized and the inverse tensor to it  −ε 1

ij  
has the form

	

−

− −

−

 ε 
 ε ε
 
 ε 

1

1 1

1

0 0
= 0 0 .

0 0

x

ij y

z

	 (13)

Considering that

1

0
,ij

−ε
=

ε
E D

having the coordinates of  the vector D, it  is  not difficult 
to calculate the coordinates of the vector E.

3. THE STATE OF SPDC RADIATION POLARIZATION
3.1. Collinear scattering mode

With synchronization of  the first type, when the fre-
quencies of the signal and idle waves are equal, the collin-
ear scattering mode corresponds to the so-called degenerate 
mode, i.e. as a result of the SPDC, two photons are gener-
ated in the same mode [39]. The quantum polarization state 
of the SPDC radiation has the form 

	 ( )( )2
ˆ= , / 2 vac ,

s sk k saψ p p k† 	 (14)

where 
skp  is  a  unit vector corresponding to  the direction 

of oscillations of the vector D of the SPDC radiation having 
a wave vector sk ; ˆ ( , )

sk sa p k†  ) is the bosonic operator of pho-
ton generation in a mode with 

skp  polarization and wave 
vector sk ; | vac > is the vacuum state of the electromagnet-
ic field. To achieve a quantum polarization state the SPDC 
only needs to determine the direction of polarization of its 
own wave propagating in a birefringent crystal. 

In collinear geometry, the SPDC is  = ||s i pk k k . The di-
rection of the pump wave vector pk  is given by two crystal-
lographic angles, the polar angle θp and the azimuthal angle 
φp (Fig. 1). The coordinates of the vector sk  in the coordinate 
system { , , }X Y Z  

	
sin cos

= sin sin .
cos

p p

s s p p

p

 θ φ
 

θ φ 
 θ 

k k 	 (15)

in the coordinate system 1f  and 2f  take values

   
( ) ( )

( )

( )

1 2 2

1/21/2 2 2
2

1/22 2 2 2 2

2 2

sin
= cos ,

cos sin 0

= cos sin

cos sin sin sin cos

cos cos
cos sin .

sin cos cos

p
x y

p
p x p y

z x p y p

x p p y p p z p

p p x

p p y

p p x p y

−

−

 φ
ε ε  − φ φ ε + φ ε   

ε ε φ + ε φ ×

× ε φ θ + ε φ θ + ε θ ×

 θ φ ε 
 × θ φ ε
 
 − θ φ ε + φ ε 

f

f
	 (16)

Let’s  also switch to  the coordinate system { , , }x y z , 
in which the z axis is directed along the vector k, the x axis 
lies in the plane (Z, k). The direction of the vector oscilla-
tions D will lie in the xy plane. The coordinate system {xyz} 
will be called the coordinate system associated with pumping. 
The transformation of the coordinate system {X, Y, Z} → {x, 
y, z} can be performed using a sequence of rotations around 
the Z axis by an angle φp and then around the new y׳ axis 
by the angle θp. As a result, the transformation matrix of the 
coordinate system has the form 

	

( ) ( )−θ −φ

 θ φ θ φ − θ
 

− φ φ 
  φ θ θ φ θ 

= =

cos cos cos sin sin
= sin cos 0 ,

cos sin sin sin cos

y p z p

p p p p p

p p

p p p p p

M R R

	 (17)

where 

( )
cos 0 sin

= 0 1 0
sin 0 cos

yR
 θ θ
 θ  
 − θ θ 

is the rotation matrix around the y axis by an angle θ, and 

	 ( )
 φ − φ
 φ φ φ 
  

cos sin 0
= sin cos 0

0 0 1
zR 	 (18)

is the rotation matrix around the z axis by an angle φ [40].
The vectors f1 and f2 in this coordinate system are writ-

ten as
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( ) ( )
( )

1 2 2

1/21/2 2 2
2

1/22 2 2 2 2

0
= 1 ,

cos sin 0

= cos sin

cos sin sin sin cos

cos2
2 2

cos cos2 .
2

0

xyz x y

p x p y

xyz
z x p y p

x p p y p p z p

x y x y
p

x y
p p

−

−

 
ε ε  − φ ε + φ ε   

ε ε φ + ε φ ×

× ε φ θ + ε φ θ + ε θ ×

 ε + ε ε − ε
+ φ 

 
ε − ε 

× − θ φ 
 
 
 
 

f

f

	 (19)

If ε ≠ εx y , then to find the direction of oscillation of the 
vector D of  the related waves in an anisotropic medium, 
expressions for 1

xyzf  and 2
xyzf  from (19) should be inserted 

into (12) and thus get the values of the parameters s1 and s2. 
At the same time, the directions of the vector oscillations D, 
p1 and p2 are defined by the expressions

	 1 1 1 2 1

2 1 2 2 2

= cos sin ,

= cos sin ,

xyz xyz

xyz xyz

s s

s s

+

+

p f f

p f f
	 (20)

and the refractive indices of the waves are equal respectively 
to  1| |p  and 2| |p .

For the case of uniaxial crystals, the expressions are sim-
plified. Let’s assume that 

⊥ε ε ε ε ε||= = , = .x y z

Note that 

( )1 2, = 0,xyz xyzf f

and this means that

1 1 2 2= , = .xyz xyzp f p f

In this case

	

1

||
2 2 2

||

0
= 1 ,

0
1

= 0 ,
sin cos 0

u

u

p p

⊥

⊥

⊥

 
 ε − 
  

 
ε ε  

 ε θ + ε θ   

p

p

	 (21)

that is, we obtain known expressions for the refractive index 
of an ordinary wave

⊥ε=on

and the extraordinary wave

( )−
⊥θ ε + θ ε

1/22 2
||= / / .sin cose p pn

To find the direction of the vector D, the concept of the 
main plane containing the optical axis of the crystal (Z) and 
the vector k is usually introduced. As it is easy to see, the vec-
tor D of an ordinary wave p1 is normal to the main plane, and 
the vector D of an extraordinary wave p2 lies in the main plane.

The value of p1 or p2, which corresponds to a large value 
of the refractive index, after normalization by a unit length, 
is the desired vector pks in (14).

3.2. Non-collinear scattering mode
In the non-collinear SPDC mode, photons are generated 

in different modes. Such a regime is not degenerated, and 
the quantum polarization state of the SPDC radiation in the 
approximation of a given field of a plane monochromatic 
pump and an infinitely long crystal [41] can be represented as

	 ( )( ) ( )( )
0

( ) , , .s s i id f
π

ψ φ φ θ φ φ ⊗ θ φ + π∝ φ∫ p p 	 (22)

Here f(j) is a function describing the dependence of the 
scattering efficiency on the azimuth angle, ,s ip  is the quan-
tum polarization state of the photon in the signal (s) and idle 
(i) modes, having the form 

	 ( ) ( ), ,, , , ,ˆ= , , vac ,
s i s is i k s i s i k s ip p a p kθ φ † 	 (23)

where 
, , ,( , )

s ik s i s iθ φp  is  a  unit vector specifying the direc-
tion of  oscillation of  the SPDC radiation vector D, scat-
tered at the polar angle θ ,s i and the azimuthal angle φ ,s i (see 
Fig. 1), 

, ,ˆ ( , )
s ik s ia p k†  ) is a bosonic photon generation operator 

in a mode with polarization 
,s ikp  and wave vector ,s ik . The 

indices «s» and «i» correspond to the signal and idle waves 
respectively.

To find the direction of oscillation of the D emission vec-
tor in the signal 

skp  and idle 
ikp  waves in the coordinate sys-

tem {XYZ}, it is enough to find the coordinates of the wave 
vectors ks and ki. This can be done using a sequence of four 
rotations (Fig. 1), combining unit vectors along Z in the co-
ordinate system XYZ with a unit vector, directed along ks,i:

	 ( ) ( ) ( ) ( ), , , ,

0
= 0 ,

1
s i s i z p y p z s i y s iR R R R

 
 φ θ φ θ  
  

k k 	 (24)
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where Ry and Rz are defined in (17), (18). Substituting (24) 
and (12) into (11) and taking the semi-axis with a greater 
length, we obtain the direction of the vector D of the SPDC 
radiation necessary for calculating the quantum state (22).

3.3. Numerical calculations
According to the above expressions, the direction of the 

vector D in the crystals BBO (barium β-borate) and BiBO 
(bismuth triborate) was calculated. For calculations, the 
Sellmeier equations for BBO [42] and BiBO were used 
(with correction for the refractive index of air, see [43]). 
Calculations were performed for pumping at a wavelength 
of 405 nm, in a  frequency-adjusted mode. Scattering an-
gles were considered 0, 3◦, 10◦, 17◦ and 30◦ outside the 
crystal, for a biaxial BiBO crystal, the scattering angle was 
considered for js = 0. For the BiBO crystal, calculations 
were performed for jp = 45◦ and jp = 90◦. Calculations for 
a uniaxial BBO crystal do not depend on the angle jp due 
to the symmetry of the ellipsoid of wave norms. The corre-
sponding angles θp are shown in the table. The calculation 
of the polarization deviation angle of the SPDC is carried 
out, γ(θs,i, js,i), defined as the angle between the directions 
the oscillation of the radiation vector D in the non-collin-
ear mode and the direction of the oscillation of the vector 
of the D wave of the same type with ks,i||kp at the same pa-
rameters θp, jp and wavelength. 

Fig. 1. Geometry of the SPDC with respect to the crys-
tal-physical coordinate system {XYZ} and the coordinate sys-
tem {xyz} associated with pumping.

Table 1. Crystal parameters used in the calculation. 
Calculations were performed for BBO and BiBO 
crystals (with a fixed value of φp = 45◦ and φp = 90◦) 
with different values of θp corresponding to the values 
of the scattering angle out

sθ  (0, 3◦, 10◦, 17◦ and 30◦) 
outside the crystal when φs = 0.

θs
out,

deg.
θp,

deg.
arccos s1,

deg.
arccos s2,

deg

BBO 0
3

10
17
30

28.82
29.24
33.32
41.15
67.86

90.0
86.8
81.0
78.6
83.0

90.0
86.8
81.0
78.6
83.0

BiBO, 
jp = 45◦

0
3

10
17
30

141.39
141.06
137.74
131.09
104.84

90.0
89.4
88.4
87.4
88.8

90.0
89.2
86.8
84.6
87.5

BiBO, 
jp = 90◦

0
3

10
17
30

152.08
151.71
148.06
141.05
118.38

90
88.5
85.2
82.8
83.5

90
88.5
85.2
82.8
83.5

Note that in a uniaxial BBO crystal there are directions 
(js = 0.180°) at which the polarization deviation angle is zero. 
This is due to the fact that the BBO crystal is uniaxial and 
negative, as a result of which the waves generated as a result 
of SPDC are ordinary. Under these conditions, the direction 
of the vectors D is perpendicular to the same main plane. 
In a biaxial BiBO crystal, on the contrary, in a non-collinear 
mode, the direction of the vector D does not coincide with 
the direction-using the vector D in collinear mode. 

Fig. 2 shows the dependences on the azimuthal scattering 
direction js of the angle γ of the polarization deviation of the 
SPDC during the transition from the collinear to the non-
collinear mode and the angle δ between the vectors D of the 
signal and idle SPDC waves. In Fig. 2, it  is seen that the 
value of the polarization deviation angle can take values ex-
ceeding 15°, while the value of the angle between the vectors 
D of the signal and idle waves exceeds 30°. 

It is also noteworthy that the graphs for BBO and BiBO 
at φp = 90° are symmetric at φs ↔ 360°− φs, which is due 
to the symmetry of the ellipsoid sections of the wave normal 
lines. At φp = 45°, this symmetry is lost, which also affects 
the symmetry of the direction of the vector D.

In a uniaxial BBO crystal, the SPDC radiation is pro-
duced by  an  ordinary wave, and the value of  the refrac-
tive index does not depend on the direction of scattering. 
As a result, the conditions of phase synchronization mean 
that the SPDC radiation forms a cone with a constant angle 
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Fig. 2. a, c, e — Dependences of the angle γ between the vector D of the SPDC radiation in non-collinear and collinear 
modes from the azimuthal scattering direction φs; b, d, f are dependences of the angle δ between the vectors D of the signal 
and idle waves on the azimuthal scattering direction φs. Graphs (a, b) are for the BBO crystal; (c, d) for the BiBO crystal, 
φp = 45°; (e, f) for BiBO crystal, φp = 90°. Blue circles, orange triangles, green squares, red diamonds and purple crosses cor-
respond to the scattering angles 0, 3°, 10°, 17° and 30° outside the crystal.

Fig. 3. a, c Dependences of the angle of non-collinearity (outside the crystal) on the azimuthal scattering direction φs; b, d are 
dependences of the deviation of the scattering angle of the mean value in the azimuthal direction on the azimuthal scatter-
ing direction φs. Graphs (a, b) are for the BiBO crystal, φp = 45°; (c, d) for the BiBO crystal, φp = 90°. Blue triangles, orange 
squares, green diamonds, red crosses correspond to the scattering angles 3°, 10°, 17° and 30° outside the crystal (at φ = 0).
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of solution (the angle of non-collinearity). This fact is widely 
known in the literature. As for the biaxial BiBO crystal, the 
refractive index for SPDC radiation depends on the scatter-
ing direction, and, in principle, the scattering angle may de-
pend on the azimuthal scattering direction. No correspond-
ing estimates have been made in the literature.

Fig. 3 shows the dependence of the angle of non-colli-
mation (outside the crystal) on the azimuthal scattering di-
rection for the BiBO crystal at jp = 45◦ and jp = 90◦. It can 
be seen from Fig. 3 that for scattering angles up to 17◦, the 
value of the deviation of the scattering angle is relatively small. 
At the same time, at θs ≈ 30◦, the scattering angle varies with-
in the range of about 2◦, whereas for the case of jp = 45◦,  
the deviation is slightly greater than for jp = 90◦. Just like the 
direction of the vector D, at jp = 45◦, unlike jp = 90◦, there 
is no symmetry js ↔ 360◦ − js.

4. THE EFFECT OF SPDC POLARIZATION 
DEVIATION ON THE ENTANGLEMENT 

OF BIPHOTONS, GENERATED IN  
A TWO-CRYSTAL SCHEME 

The phenomenon of  polarization deviation in  the 
non-collinear SPDC mode leads to a deterioration in the 
degree of quantum polarization entanglement of photonic 
pairs. One of the most well-known schemes for the genera-
tion of polarization-entangled photon pairs is the so-called 
two-crystal scheme (Fig. 4), consisting of two sequentially 
arranged identical nonlinear crystals oriented orthogonally. 
Falling on non-linear crystals, the pump is divided by polar-
ization: its vertical component in the first crystal participates 
in the generation of photonic pairs, and the horizontal one 
does not participate and passes practically without interac-
tion, since the conditions of phase synchronism for this com-
ponent are not fulfilled. In the second crystal, on the con-
trary, there is a horizontal component that is involved in the 
generation of a photonic 

The arrangement of crossed nonlinear crystals is shown 
pair, while the vertical pumping component f is not. In this 
case, the quantum state at the output of the two-crystal cir-
cuit in  the approximation of plane signal, idle and pump 
waves, has the form [44] 

	 Ψ ∝ cos æ 1 2 sinλ ⊗ λ + ‟ æ 1 2 ,ie φ χ ⊗ χ 	 (25)

where the first term is the amplitude of the quantum polari-
zation state generated in the first in a nonlinear crystal, and 
the second in the next nonlinear crystal, j is the phase be-
tween the amplitudes, regulated by the ellipticity of the pump 

polarization, ⊗ means the tensor product, æ the parameter de-
scribing the proportion of the quantum state generated in each 
of the nonlinear crystals in the quantum state ψ . State 1λ  
is the polarization state of a photon in the signal mode scat-
tered at an azimuthal angle js = 0, 2λ  is the polarization 
state of a photon in the idle mode at ji = 180◦, 1χ  is the 
polarization state of a photon in the signal mode at js = 90◦,  

2χ  the polarization state of  the photon at  ji  = 270◦.  
The dependence of the SPDC angle θs,i on the azimuthal 
direction is neglected. Each amplitude is the product of the 
polarization states of the photon in the signal and the idle 
modes, respectively. In the laboratory basis for the signal and 
idle states beam, the polarizations of a single photon have the 
form 

	

   θ θ   λ λ
   θ θ   
   θ θ   χ χ
   θ θ   

1 1
1 2

1 1

2 2
1 2

2 2

cos cos
= , = ,

sin sin

cos cos
= , = ,

sin sin

s i

s i

s i

s i

	 (26)

θ ,
1,2
s i  is the value of the angle between the direction of the vec-

tor D and the unit vector xs,i in the signal and idle SPDC 
beams. The indices “1” and “2” correspond to the SPR radi-
ation formed in the first and second crystals of the circuit, re-
spectively. It is noteworthy that the polarization state of each 
photon is described in a two-dimensional complex Hilbert 
space, and the polarization state of a photon pair is described 
in a 2 × 2 dimension space. To describe the entanglement 

Fig. 4. (a) One of the crystals of the two-crystal scheme. 
The quantum polarization states of single photons are 
schematically shown corresponding to the collection di-
rections in a two-crystal scheme. (b) The optical scheme 
of the source is a two-crystal scheme. 
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in a two-particle system consisting of two-dimensional sub-
systems, there is a whole set of metrics [45], such as “Con-
currence”, “Tangle” (coupling), entanglement of formation. 
We use Tangle because it is most sensitive to changes in the 
quantum state in the region of large degrees of quantum en-
tanglement [46]. For a pure quantum state, entanglement 
can be expressed as [44] 

	 ( )Ψ Ψ σ ⊗ σ Ψ*
2 2ˆ ˆ= ,T 	 (27)

where * means complex conjugation, and

	
 −

σ    
2

0ˆ =
0
i

i
	 (28)

is  the Pauli matrix. Coupling takes the value of 1  for the 
maximally entangled quantum state and 0 for the factorized 
quantum state.

The entanglement for the quantum state (25) takes the 
value

	 ( ) ( )
2 22

1 2

1 2

2 1 1sin
= ,

1 sin 2 Re

æ

æ i

s s
T

s s e φ

   − −   
Ψ

+
	 (29)

where 

λ χ1,2 1,2 1,2= | .s

The value of  ( ) = 1T ψ , if  1 2= = 0s s , o r

	
( )

1 2

1 2

= ,
æ = / 4 ,

= arg ,

s s

n

s s n

π + π
φ π − + π

	 (30)

where n is an integer. The first condition means that the an-
gles between the vectors D  1λ , 1χ  and 2λ , 1χ  should 
be equal. The following condition means that the amplitude 
modules of the quantum state corresponding to the first and 
second crystals must be equal. The third condition says that 
to obtain a quantum state with the maximum possible de-
gree of entanglement, it is necessary to set the optimal phase 
value between the radiation formed in the first and second 
crystals of the circuit.

Figure 5 shows the phase dependence of coupling j for 
the BBO crystal and the crystal BiBO at  jp  = 45◦ and 
jp = 90◦. Calculations are performed for scattering angles 
0, 3◦, 10◦, 17◦ and 30◦ outside the crystal. It can be  seen 
from Fig. 5 that for BiBO crystal at j = 0, with an increase 
in the scattering angle from 0 to 30◦, the coupling decreases 

from 1 to 0.85. At the same time, for a biaxial BiBO crystal 
at jp = 45◦, as the scattering angle increases, the coupling 
decreases by a smaller value (from 1 to 0.98). At jp = 90◦, 
the decrease in  cohesion is  more pronounced compared 
to jp = 45◦. At the same time, when using BBO crystals and 
BiBO crystals with jp = 90◦, the coupling value can be com-
pletely restored to a value of 1 at j = 180◦. At jp = 45◦, there 
is no complete recovery of coupling. This is due to the fact 
that due to the symmetry in the BBO crystal and the BiBO 
crystal |s1| = |s2|, and in a BiBO crystal at jp = 45◦ |s1| ≠ |s2| 
(see the table). 

Fig. 5. Dependence of coupling (Tangle) on phase φ for 
BBO crystal (a), BiBO crystal at φp = 45◦ (b), BiBO crys-
tal at φp = 90◦ (c). Blue circles, orange triangles, green 
squares, red diamonds and purple crosses correspond 
to the scattering angles 0, 3◦, 10◦, 17◦ and 30◦ outside the 
crystal. The corresponding angles θp given in the table.
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5. CONCLUSION
In the paper, analytical expressions are given for the di-

rection of oscillations of the vectors D and E of radiation 
propagating in uniaxial and biaxial nonlinear optical crys-
tals, as well as the value of the refractive index. The obtained 
results were used to calculate the value of the polarization 
deviation angle of the SPDC γ, as well as the angle between 
the polarization of the signal and idle waves δ in BBO and 
BiBO crystals. It is shown that the value of γ can exceed 15◦, 
and the value of γ  is 30◦. The obtained estimates indicate 
the importance of taking into account the deviation of the 
polarization of the SPDC in the non-collinear mode when 
creating sources of polarization-entangled photon pairs. Also, 
taking into account the polarization deviation of the SPDC 
is required when calculating the value of effective nonlinear-
ity in a non-collinear SPDC. These results can also be used 
to create phantom polarimeters in which the systematic error 
due to the phenomenon of polarization deviation has been 
eliminated.

For the first time, estimates were made for the deviation 
of the cone shape of the SPDC. It is shown that at the scat-
tering angle ≈ 30◦ when the azimuthal direction changes, the 
scattering angle changes within 2◦. At the same time, with 
the direction js = 0; the 180◦ scattering angle decreases, and 
with js = 90◦; the 270◦ scattering angle on the contrary in-
creases. This means that in a two-crystal scheme with large 
scattering angles, an estimate of the deviation of the cone 
shape of the SPDC is required in order for the radiation gen-
erated in two sequentially arranged nonlinear crystals to spa-
tially coincide.

It is found that the negative effect of polarization devi-
ation on the degree of quantum entanglement (cohesion) 
in  a  two-crystal scheme when using biaxial crystals can 
be  improved by choosing the optimal parameter j, deter-
mined by  the ellipticity of  the pump polarization. At  the 
same time, at  |s1| = |s2|, the maximum degree of quantum 
entanglement can be achieved, and at  |s1| ≠ |s2|, the entan-
glement can only be partially restored. This result will make 
it possible in the future to create sources of polarization-en-
tangled photon pairs with a degree of entanglement close 
to the maximum. 
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