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Abstract. A consistent analysis of the quantum state of polarization of SPDC radiation is presented and the pe-
culiarities of the quantum state of polarization of SPDC in biaxial nonlinear optical crystals are considered. It is
shown that the SPDC polarization deviation angle can exceed 15°, and the angle between the signal and idler wave
vectors D can exceed 30°. Estimates of the curvature of the cone formed by SPDC radiation in biaxial crystals are
also given. The influence of SPDC polarization deviation in a non-collinear mode on the entanglement of bi-
photon states generated by a double-crystal scheme is analyzed, it is shown that Tangle of the generated quantum
state can deteriorate by 6%, and conditions are identified under which entanglement can be completely restored.
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1. INTRODUCTION
Spontaneous parametric down-conversion [1] (SPDC)
is the effect of the generation of a pair of photons as a result
of three-wave interaction in a quadratic nonlinear medium
of the pump wave and fluctuations of the electromagnetic
vacuum. At the same time, the laws of conservation of energy
and momentum are fulfilled, which can be written as:

o = ho + o
? ’ ' (1)
nk » = rk + 7k,
where O, and k i ATe the frequency and wave vector

of pump waves (p), signal (s) and idle (i) waves respectively.
In the case of the first type of SPDC, which is considered
in this paper, pumping is a wave of the same type, and the
signal and idle waves are of a different type. In uniaxial crys-
tals, the signal and optical waves are either ordinary or ex-
traordinary, and in biaxial crystals they are either fast or slow.
The SPDC effect occupies one of the central places
in modern quantum optical technologies and research [2, 3].
Thus, the SPDC effect is used in metrology for the non-etal-
on determination of the quantum efficiency [4] of single pho-
ton detectors [5-7], based on the SPDC,
methods for measuring distances with accuracy above the
standard quantum limit are being developed [8]. SPDC
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occupies a special place in quantum technologies [9]. The
SPDC sources of photon pairs entangled by polarization are
the bricks for the realization of multiphoton entangled quan-
tum states. This method was used for the first time to obtain
the Greenberger—Horn—Zeilinger (HHZ) state [10] of three
polarization-entangled photons, and later it was possible
to obtain the maximally entangled quantum state of 12 pho-
tons, each of which was in a separate spatial mode [11].

One of the key schemes for generating polarization-entan-
gled photon pairs is a two-crystal scheme [12] using SPDC
with the first type of synchronism in a non-collisional mode.
The non-collinear mode has an advantage over the collinear
mode (for example, when used in crystals with a regular do-
main structure [13,14]) in that it allows controlling the fre-
quency [15-17] and angular [18, 19] degrees of freedom of the
quantum state due to a change in the scattering angle [20].
Quantum states with a high degree of quantum entanglement
have also been obtained using the non-collinear mode [21-
23]. However, in the non-collinear mode, the question about
the direction of polarization of the wave, unlike the collinear
mode, becomes non-trivial.

In the non-collinear geometry of the SPDC, the wave
vectors k; and k; are not parallel to k,, and the direction
of oscillations of the vectors E and D of the signal and idle
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waves depend on the direction of scattering, which is the
phenomenon of deviation of the polarization of the SPDC.
If for “ordinary” nonlinear optics the phenomenon of polar-
ization deviation does not lead to qualitative changes in the
process of parametric generation, then in the case of SPDC
it becomes significant when trying to build two-crystal cir-
cuits with a high degree of entanglement of the quantum po-
larization state [24,25]. The direction of oscillations of vec-
tors E and D in uniaxial crystals has been studied in the lit-
erature [26], however, for biaxial crystals, as far as we know,
the question of polarization SPDC deviation has not been
studied. The main attention was paid to the numerical solu-
tion of the Fresnel equation and the determination of the
refractive index in biaxial crystals to calculate the synchro-
nism of second harmonic generation [27-29] and SPDC
[30]. Note that the interest in biaxial crystals is determined
by the fact that in some biaxial crystals, the value of effec-
tive nonlinearity exceeds the value of effective nonlineari-
ty in uniaxial crystals. For example, in a BiBO crystal, the
value of effective nonlinearity is twice higher (= 3.5 pm/V)
than in BBO (= 1.75 pm/V) [31] for a frequency-degenerate
SPDC with pumping at a wavelength of 405 nm. The direc-
tion of the polarization plane of the SPDC radiation plays
a special role in the new field of phantom polarimetry [32],
which uses SPDC sources operating in a non-collinear mode
[33,34]. Deviation of the radiation polarization plane in the
object arm in the phantom polarimeter will lead to a system-
atic error in the determination of the azimuth angle of the
anisotropy of the object under study.

The purpose of this work is to obtain an expression for
the deviation of the direction of oscillations of the vector
D ofthe SPDC radiation in biaxial crystals and to determine
the degree of influence of polarization deviation on the en-
tanglement of quantum states generated by a two-crystal cir-
cuit using biaxial crystals.

In section 2, the expressions for the direction of oscilla-
tions of the vectors E and D of natural waves in birefringent
crystals are given. We proceeded from the fact that the di-
rection of oscillation of the vector D of its own wave is the
semi-axis of the ellipse section of an ellipsoid of wave normal
with a plane perpendicular to the vector k. The solution in-
cludes both the case of uniaxial and the case of biaxial crys-
tals. In section 3, the expressions for the quantum polariza-
tion state of the SPDC radiation in collinear and non-collin-
ear modes are given.

In section 4, numerical estimates of the effect of the po-
larization deviation of the SPDC in a two-crystal scheme for
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a biaxial BiBO crystal are given and a comparison is made
for the case of a uniaxial BBO crystal. It is shown that
in a two-crystal scheme using BiBO crystals, the coupling
parameter is due to the phenomenon of polarization devia-
tion is deteriorating, and conditions have been identified un-
der which the deterioration of cohesion can be fully restored.
In section 5, the results of the work are summarized.

2. POLARIZATION OF LIGHT IN BIAXIAL
CRYSTALS
To find the direction of oscillations of the vector D and
determine the value of the refractive index, we will use the
equation of the ellipsoid of wave normals [35-37]

x? y? 7?
LS =, )
g, &, &

where € g —are the main components of the dielectric

constant tensor, {X,Y,Z} — is a crystal-physical coordi-
nate system in which the dielectric permeability tensor has
a diagonal appearance. To find the direction of oscillation
of vector D is a crystal-physical coordinate system in which
the dielectric permeability tensor has a diagonal appearance.
To find the direction of oscillation of vector k = {ky,ky .,k ,}.
The cross section is an ellipse, the main semi-axes of which
set the direction of vibrations D, and their lengths are equal
to the values of the refractive indices of the corresponding
waves.
The equation of the secant plane has the form
(k,r) = Xky + Yk, + Zk, =0. 3)
We carry out the procedure for finding the direction
of rotation of the vector D and the refractive indices using
the affine transformation of the system of coordinates [38],
in which the ellipsoid of wave normal lines will have the form
of a sphere of unit radius. To do this, we will make the fol-
lowing substitution of variables (X,Y,Z) — (u,v,w):

u=X/\/g, v=Y/\/§, w=Z/\/g,

v ewt =1,

“4)

In this case, the equation of the secant plane in the new
coordinate system will have the form

ke gt + ky\e v + ke w = 0. (5)
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The vector perpendicular to the secant plane, in the new
coordinate system can be written as

K= (kx\/gxsky‘/gy’kz\/EZ) = (Ku’Kv’Kw)' (6)

In the case of k)z( + k}z, =0, k, # 0 in an anisotropic me-

dium, two eigenwaves with directions of oscillation of the

vector D can propagate along the axes X and Y and with
e

Considering the case of ky + k&, # 0. Let’s find the

equation of the secant figure in parametric form. For the

refractive indices of \/gx and Je  respectively.

case of the coordinate system {u,v,w} the secant figure will
be a circle of unit radius lying in a plane perpendicular to x.
It is not difficult to check by direct substitution that the two
following vectors are perpendicular to k and each other:

1 KV
el > _Ku s
K+ Kv 0
[Kxe ] 1
e, = | = x (7
K| 2 2 2 2 2
\/(Ku + KV)(KM + X, + Kw)
KuKW
X K K

Thus, in the coordinate system {u, v, w} the equation of the
secant figure in parametric form
is written as

Ty — € SIS +e,coss, 8)

where s is the parameter, taking values from 0 to 2x. In the
original notation

ky g,
1
N _kX\/g ,
kye, + kysy 0
e, = . x (9

\/(k)z{ex + k)z,ey)(k)zfex + k%ey + k%sz)

kkzfece;

x| kyk, €€,

2 2
—(kxex + kYey)

In the original notation {u,v,w} — {X,Y,Z}, ¢, — f,

e, — f, we have

kY
P P
1 2 2 X P
kXex+kY8y 0
€
f, = x  (10)

(k)z(sx + kﬁsy)(k)z(sx +kye, + kéez)

kykze,
X kykzey

2 2
—(kXex + kysy)

In this case, the equation of the ellipse obtained as a re-
sult of the section of the Fresnel ellipsoid with a plane per-
pendicular to k in the coordinate system {X, Y, Z} has the
form

r(X,Y,Z)=f1coss+fzsins, (11)

where s is a parameter taking values from 0 to 2n. The direc-
tions of its main semi-axles determine the direction of oscil-
lations of the vector D, and the lengths of the semi-axles are
equal to the corresponding refractive indices.

In uniaxial crystals, e = €, and (f;,f,) = 0, i.e. the vec-
tors f, and f, are the semi-axes of the ellipse and set the direc-
tions of oscillation of the vector D, and their lengths deter-
mine the refractive indices. It is also noted that the vector f1,
which determines the direction of oscillations of the vector
D and the refractive index for an ordinary wave, lies in the
(XY) plane. At the same time, its length does not depend
on the direction k, which coincides with the known result
for showing the refraction of an ordinary wave in birefrin-
gent crystals.

However, in biaxial crystals, in which all the three main
components of the dielectric constant tensor are not equal
to each other, (f;, f,) # 0, and the main semi-axes of the el-
lipse are determined by the expression (11), r(s;, 3 4) at pa-
rameter values

1 |f1|2 - |f2
2 (f,.1,)

s, =5 +71/2,

|2
s = r_ arctg

4
(12)

S34 = tl,2 + T,

in this case, r(s; 4) and r(s, ) are respectively equal in modu-
lus and oppositely directed.
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It is noteworthy that in the coordinate system {X, Y, Z}
the tensor ¢g; is diagonalized and the inverse tensor to it ei;l
has the form

-1
e, 0 0
s;1= 0 e;‘ 0 (13)
-1
0 0 ¢g
Considering that
-1
E i
€

having the coordinates of the vector D, it is not difficult
to calculate the coordinates of the vector E.

3. THE STATE OF SPDC RADIATION POLARIZATION
3.1. Collinear scattering mode

With synchronization of the first type, when the fre-
quencies of the signal and idle waves are equal, the collin-
ear scattering mode corresponds to the so-called degenerate
mode, i.e. as a result of the SPDC, two photons are gener-
ated in the same mode [39]. The quantum polarization state
of the SPDC radiation has the form

’W> = pk ( (pk > )) /\/7|V3.C> (14)
where Py is a unit vector corresponding to the direction
of oscillations of the vector D of the SPDC radiation having
a wave vector k ; a (pk ,K,) ) is the bosonic operator of pho-
ton generation in a mode with P polarization and wave
vector k; | vac > is the vacuum state of the electromagnet-
ic field. To achieve a quantum polarization state the SPDC
only needs to determine the direction of polarization of its
own wave propagating in a birefringent crystal.

In collinear geometry, the SPDCisk, =k, || k. The di-
rection of the pump wave vector k » is given by two crystal-
lographic angles, the polar angle 0 » and the azimuthal angle
¢p (Fig. 1). The coordinates of the vector k in the coordinate
system {X,Y,Z}

in
S Gpcosq)p

=|ks| sin® ,sin¢, (15)

cosep

in the coordinate system f; and f, take values
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sinq)p

—cosq)p
0

f, = (e.) (encos®, +e,si’s,)

(o £e,
: % € +gin’0 €
cos®,€, +sin0 €,

-12  (16)
2 . L2
X(chos 0,5in0, + € sin’0,sin 0, + Ezcos29p) x
cos BP cos ¢pex
X cosepsm(bpey

~ 2 2
Sln@p(cos €, * cos %’e‘y)

Let’s also switch to the coordinate system {x,y,z},
in which the z axis is directed along the vector k, the x axis
lies in the plane (Z, k). The direction of the vector oscilla-
tions D will lie in the xy plane. The coordinate system {xyz}
will be called the coordinate system associated with pumping.
The transformation of the coordinate system {X, Y, Z} = {x,
y, z} can be performed using a sequence of rotations around
the Z axis by an angle ¢p and then around the new y’ axis
by the angle 6 = As a result, the transformation matrix of the
coordinate system has the form

M =R, (_GP)RZ(_q)p) -

cosepcosd)p cosepsinq)p —sinep (17)
= —sing, coso, 0 |
cosq)psinep sinepsinq)p cos8,

where
cos® 0 sin®

R()=| 0 1 0
—sin® 0 cosO

is the rotation matrix around the y axis by an angle 6, and

cosd —sing 0
R, (d)) =|sing cosd O (18)
0 0 1

is the rotation matrix around the z axis by an angle ¢ [40].
The vectors f; and f, in this coordinate system are writ-
ten as
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0

£07 = €&y -
1 2 .2 ’

cos0,€, +sin0yE, |

1/2 ~1/2
0z _ 2 .2
;7 = (SZ) (chos , +€,sin ¢,,) X
% o 2
><(chos 0,5in°0, + €,5in°0 ,sin 0, + Ezcoszep)
€. +te, €. —¢
x T8 ST
+ cos2
2 2 ¢

S

-1/2
(19)

X —_

y
cos6 , cos 2¢p

0

Ife, # €,
vector D of the related waves in an anisotropic medium,

, then to find the direction of oscillation of the

expressions for f;*° and £,°% from (19) should be inserted
into (12) and thus get the values of the parameters s, and s,.
At the same time, the directions of the vector oscillations D,
p, and p, are defined by the expressions

— 2
= fl

P, coss, + £, “sins,,

D,
and the refractive indices of the waves are equal respectively

=% (20)

xyz
coss, + f57" sins,,

to| p, and| p, |.
For the case of uniaxial crystals, the expressions are sim-
plified. Let’s assume that

€ =E

P T8, =€, & =g

Note that

(flxyz’ fzxyz) =0,

and this means that

p=6" p =6
In this case
0
p’f = \/gl_ -1 >
0

(21

1
ge
- =L
P, = 0,
\/SLsin29p+€||00529p 0

that is, we obtain known expressions for the refractive index
of an ordinary wave

n, = Jﬁl

and the extraordinary wave

-1/2
n, = (sinze,, /€, +cos®, /8”)

To find the direction of the vector D, the concept of the
main plane containing the optical axis of the crystal (Z) and
the vector k is usually introduced. As it is easy to see, the vec-
tor D of an ordinary wave p, is normal to the main plane, and
the vector D of an extraordinary wave p, lies in the main plane.

The value of p, or p,, which corresponds to a large value
of the refractive index, after normalization by a unit length,
is the desired vector p,, in (14).

3.2. Non-collinear scattering mode
In the non-collinear SPDC mode, photons are generated
in different modes. Such a regime is not degenerated, and
the quantum polarization state of the SPDC radiation in the
approximation of a given field of a plane monochromatic
pump and an infinitely long crystal [41] can be represented as

,(6,(0).0)) ®|p;(6,(0), 0+ x)). (22

V) = [dor ()
0

Here f(¢) is a function describing the dependence of the
scattering efficiency on the azimuth angle, |ps,[> is the quan-
tum polarization state of the photon in the signal (s) and idle
(i) modes, having the form

i) = 5 (00000,)d' [, s

where p, (6

(23)

S!i,q)s’l.) is a unit vector specifying the direc-
tion of oscillation of the SPDC radiation vector D, scat-
tered at the polar angle GS’ ; and the azimuthal angle Oy (see
Fig. 1), a (pk K, )) is a bosonic photon generation operator
. The

indices «s» and «i» correspond to the signal and 1d1e waves

in a mode with polarlzatlon Py and wave vector k

respectively.

To find the direction of oscillation of the D emission vec-
tor in the signal p K, and idle p x, waves in the coordinate sys-
tem {XYZ}, it is enough to find the coordinates of the wave
vectors ks and ki. This can be done using a sequence of four
rotations (Fig. 1), combining unit vectors along Z in the co-
ordinate system XYZ with a unit vector, directed along k_ ;:

0

R.(0,)R,(0,)R.(0,,)R,(0,,) 0], 24)
1

k .=

S,i

k

S,
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Fig. 1. Geometry of the SPDC with respect to the crys-
tal-physical coordinate system {XYZ} and the coordinate sys-
tem {xyz} associated with pumping.

where R, and R are defined in (17), (18). Substituting (24)
and (12) into (11) and taking the semi-axis with a greater
length, we obtain the direction of the vector D of the SPDC
radiation necessary for calculating the quantum state (22).

3.3. Numerical calculations

According to the above expressions, the direction of the
vector D in the crystals BBO (barium B-borate) and BiBO
(bismuth triborate) was calculated. For calculations, the
Sellmeier equations for BBO [42] and BiBO were used
(with correction for the refractive index of air, see [43]).
Calculations were performed for pumping at a wavelength
of 405 nm, in a frequency-adjusted mode. Scattering an-
gles were considered 0, 3°, 10°, 17° and 30° outside the
crystal, for a biaxial BiBO crystal, the scattering angle was
considered for ¢, = 0. For the BiBO crystal, calculations
were performed for ¢, = 45° and ¢, = 90°. Calculations for
a uniaxial BBO crystal do not depend on the angle ¢, due
to the symmetry of the ellipsoid of wave norms. The corre-
sponding angles 0, are shown in the table. The calculation
of the polarization deviation angle of the SPDC is carried
out, y(0,,;, o), defined as the angle between the directions
the oscillation of the radiation vector D in the non-collin-
ear mode and the direction of the oscillation of the vector
of the D wave of the same type with k, |k, at the same pa-
rameters 0,, ¢, and wavelength.
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Table 1. Crystal parameters used in the calculation.
Calculations were performed for BBO and BiBO
crystals (with a fixed value of ¢, = 45° and ¢, = 90°)
with different values of 6, corresponding to the values
of the scattering angle 6;’”’ (0, 3°, 10°, 17° and 30°)
outside the crystal when ¢, = 0.
6,2, 0,, arccos s, | arccoss,,
deg. deg. deg. deg
BBO 0 28.82 90.0 90.0
3 29.24 86.8 86.8
10 33.32 81.0 81.0
17 41.15 78.6 78.6
30 67.86 83.0 83.0
BiBO, 0 141.39 90.0 90.0
op =45° 3 141.06 89.4 89.2
10 137.74 88.4 86.8
17 131.09 87.4 84.6
30 104.84 88.8 87.5
BiBO, 0 152.08 90 90
op =90° 3 151.71 88.5 88.5
10 148.06 85.2 85.2
17 141.05 82.8 82.8
30 118.38 83.5 83.5

Note that in a uniaxial BBO crystal there are directions
(¢, = 0.180°) at which the polarization deviation angle is zero.
This is due to the fact that the BBO crystal is uniaxial and
negative, as a result of which the waves generated as a result
of SPDC are ordinary. Under these conditions, the direction
of the vectors D is perpendicular to the same main plane.
In a biaxial BiBO crystal, on the contrary, in a non-collinear
mode, the direction of the vector D does not coincide with
the direction-using the vector D in collinear mode.

Fig. 2 shows the dependences on the azimuthal scattering
direction o, of the angle y of the polarization deviation of the
SPDC during the transition from the collinear to the non-
collinear mode and the angle & between the vectors D of the
signal and idle SPDC waves. In Fig. 2, it is seen that the
value of the polarization deviation angle can take values ex-
ceeding 15°, while the value of the angle between the vectors
D of the signal and idle waves exceeds 30°.

It is also noteworthy that the graphs for BBO and BiBO
at ¢, = 90° are symmetric at ¢, © 360°— ¢, which is due
to the symmetry of the ellipsoid sections of the wave normal
lines. At ¢, = 45°, this symmetry is lost, which also affects
the symmetry of the direction of the vector D.

In a uniaxial BBO crystal, the SPDC radiation is pro-
duced by an ordinary wave, and the value of the refrac-
tive index does not depend on the direction of scattering.
As a result, the conditions of phase synchronization mean
that the SPDC radiation forms a cone with a constant angle
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Fig. 2. a, ¢, e — Dependences of the angle y between the vector D of the SPDC radiation in non-collinear and collinear
modes from the azimuthal scattering direction ¢; b, d, fare dependences of the angle & between the vectors D of the signal
and idle waves on the azimuthal scattering direction ¢,. Graphs (a, b) are for the BBO crystal; (c, d) for the BiBO crystal,
¢, = 45°; (e, f) for BiBO crystal, ¢, = 90°. Blue circles, orange triangles, green squares, red diamonds and purple crosses cor-
respond to the scattering angles 0, 3°, 10°, 17° and 30° outside the crystal.
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Fig. 3. a, ¢ Dependences of the angle of non-collinearity (outside the crystal) on the azimuthal scattering direction ¢; b, d are
dependences of the deviation of the scattering angle of the mean value in the azimuthal direction on the azimuthal scatter-
ing direction ¢,. Graphs (a, b) are for the BiBO crystal, ¢, = 45°; (c, d) for the BiBO crystal, ¢, = 90°. Blue triangles, orange
squares, green diamonds, red crosses correspond to the scattering angles 3°, 10°, 17° and 30° outside the crystal (at ¢ = 0).
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of solution (the angle of non-collinearity). This fact is widely
known in the literature. As for the biaxial BiBO crystal, the
refractive index for SPDC radiation depends on the scatter-
ing direction, and, in principle, the scattering angle may de-
pend on the azimuthal scattering direction. No correspond-
ing estimates have been made in the literature.

Fig. 3 shows the dependence of the angle of non-colli-
mation (outside the crystal) on the azimuthal scattering di-
rection for the BiBO crystal at ¢, = 45” and @, = 90°. It can
be seen from Fig. 3 that for scattering angles up to 17°, the
value of the deviation of the scattering angle is relatively small.
At the same time, at 6, = 30°, the scattering angle varies with-
in the range of about 2°, whereas for the case of 0, = 45°,
the deviation is slightly greater than for ¢, = 90°. Just like the
direction of the vector D, at 0,= 45°, unlike 0, = 90°, there
is no symmetry ¢, < 360° — ¢,.

4. THE EFFECT OF SPDC POLARIZATION
DEVIATION ON THE ENTANGLEMENT
OF BIPHOTONS, GENERATED IN
A TWO-CRYSTAL SCHEME

The phenomenon of polarization deviation in the
non-collinear SPDC mode leads to a deterioration in the
degree of quantum polarization entanglement of photonic
pairs. One of the most well-known schemes for the genera-
tion of polarization-entangled photon pairs is the so-called
two-crystal scheme (Fig. 4), consisting of two sequentially
arranged identical nonlinear crystals oriented orthogonally.
Falling on non-linear crystals, the pump is divided by polar-
ization: its vertical component in the first crystal participates
in the generation of photonic pairs, and the horizontal one
does not participate and passes practically without interac-
tion, since the conditions of phase synchronism for this com-
ponent are not fulfilled. In the second crystal, on the con-
trary, there is a horizontal component that is involved in the
generation of a photonic

The arrangement of crossed nonlinear crystals is shown
pair, while the vertical pumping component f is not. In this
case, the quantum state at the output of the two-crystal cir-
cuit in the approximation of plane signal, idle and pump
waves, has the form [44]

|‘P> o< COS & |X1> ® |l2> + sin aee'¢|X1> ® |X2>, (25)
where the first term is the amplitude of the quantum polari-
zation state generated in the first in a nonlinear crystal, and

the second in the next nonlinear crystal, ¢ is the phase be-
tween the amplitudes, regulated by the ellipticity of the pump
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Fig. 4. (a) One of the crystals of the two-crystal scheme.
The quantum polarization states of single photons are
schematically shown corresponding to the collection di-
rections in a two-crystal scheme. (b) The optical scheme
of the source is a two-crystal scheme.

polarization, ® means the tensor product, & the parameter de-
scribing the proportion of the quantum state generated in each
of the nonlinear crystals in the quantum state | \|I>. State | 7\,1>
is the polarization state of a photon in the signal mode scat-
tered at an azimuthal angle ¢, = 0, |7\,2> is the polarization

X1> is the
polarization state of a photon in the signal mode at ¢, = 90°,

state of a photon in the idle mode at ¢, = 180°,

|X2> the polarization state of the photon at ¢, = 270°.
The dependence of the SPDC angle 60s,i on the azimuthal
direction is neglected. Each amplitude is the product of the
polarization states of the photon in the signal and the idle
modes, respectively. In the laboratory basis for the signal and
idle states beam, the polarizations of a single photon have the
form

cos 8] cos8)

d

Ay = LA, ) = )
| 1> | 2> sin 6

_ cos6; _ coseé
|Xl> (sinei }|X2> (Sinei2 }

Gf’z is the value of the angle between the direction of the vec-
tor D and the unit vector x,; in the signal and idle SPDC
beams. The indices “1” and “2” correspond to the SPR radi-

sin 6]
(26)

ation formed in the first and second crystals of the circuit, re-
spectively. It is noteworthy that the polarization state of each
photon is described in a two-dimensional complex Hilbert
space, and the polarization state of a photon pair is described
in a 2 X 2 dimension space. To describe the entanglement
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in a two-particle system consisting of two-dimensional sub-
systems, there is a whole set of metrics [45], such as “Con-
currence”, “Tangle” (coupling), entanglement of formation.
We use Tangle because it is most sensitive to changes in the
quantum state in the region of large degrees of quantum en-
tanglement [46]. For a pure quantum state, entanglement
can be expressed as [44]

T(|w)) = ‘(\1}|&2 ® 62“I’*>‘, 27)
where * means complex conjugation, and
0 —i
6, = 28
2 (i 0, (28)

is the Pauli matrix. Coupling takes the value of 1 for the
maximally entangled quantum state and 0 for the factorized
quantum state.

The entanglement for the quantum state (25) takes the
value

T(¥)) = sn'2e{1-|o)[1- |S2|2), (29)

1+ sin2e& Re(slszeiq’)

where

Si1p = <7“1,2 | X1,2>-

The value OfT(|l|I>) =1,ifs, =s,=0,0r

i =sal:
& =Tmn/4+nm, (30)
oO=m— arg(slsz) + nm,

where 7 is an integer. The first condition means that the an-
gles between the vectors D | 7\1>, | X > and | 7\2 >, | X > should

be equal. The following condition means that the amplitude

modules of the quantum state corresponding to the first and

second crystals must be equal. The third condition says that

to obtain a quantum state with the maximum possible de-
gree of entanglement, it is necessary to set the optimal phase

value between the radiation formed in the first and second

crystals of the circuit.

Figure 5 shows the phase dependence of coupling ¢ for
the BBO crystal and the crystal BiBO at ¢, = 45° and
¢, = 90°. Calculations are performed for scattering angles
0, 3°, 10°, 17° and 30° outside the crystal. It can be seen
from Fig. 5 that for BiBO crystal at ¢ = 0, with an increase
in the scattering angle from 0 to 30°, the coupling decreases

FROLOVTSEV, MAGNITSKY

(a) 1.00 1
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(b) 1.00 +

0.98 -

50 75 100 125 150 175

150 175

125

50 75 100

¢(°)

0 25

Fig. 5. Dependence of coupling (Tangle) on phase ¢ for
BBO crystal (a), BiBO crystal at ¢, = 45° (b), BiBO crys-
tal at ¢, = 90° (c). Blue circles, orange triangles, green
squares, red diamonds and purple crosses correspond
to the scattering angles 0, 3°, 10°, 17° and 30° outside the
crystal. The corresponding angles 0, given in the table.

from 1 to 0.85. At the same time, for a biaxial BiBO crystal
at ¢, = 45°, as the scattering angle increases, the coupling
decreases by a smaller value (from 1 to 0.98). At ¢, = 90°,
the decrease in cohesion is more pronounced compared
to ¢, = 45°. At the same time, when using BBO crystals and
BiBO crystals with ¢, = 90°, the coupling value can be com-
pletely restored to a value of 1 at ¢ = 180°. At @, = 45", there
is no complete recovery of coupling. This is due to the fact
that due to the symmetry in the BBO crystal and the BiBO
crystal [s,| = [s,], and in a BiBO crystal at ¢, = 45° [s| # |s,|
(see the table).

JETP, Vol. 165, No. 1, 2024



SPONTANEOUS PARAMETRIC DOWN-CONVERSION IN BIAXIAL CRYSTALS 37

5. CONCLUSION

In the paper, analytical expressions are given for the di-
rection of oscillations of the vectors D and E of radiation
propagating in uniaxial and biaxial nonlinear optical crys-
tals, as well as the value of the refractive index. The obtained
results were used to calculate the value of the polarization
deviation angle of the SPDC vy, as well as the angle between
the polarization of the signal and idle waves 6 in BBO and
BiBO crystals. It is shown that the value of y can exceed 15°,
and the value of y is 30°. The obtained estimates indicate
the importance of taking into account the deviation of the
polarization of the SPDC in the non-collinear mode when
creating sources of polarization-entangled photon pairs. Also,
taking into account the polarization deviation of the SPDC
is required when calculating the value of effective nonlinear-
ity in a non-collinear SPDC. These results can also be used
to create phantom polarimeters in which the systematic error
due to the phenomenon of polarization deviation has been
eliminated.

For the first time, estimates were made for the deviation
of the cone shape of the SPDC. It is shown that at the scat-
tering angle = 30° when the azimuthal direction changes, the
scattering angle changes within 2°. At the same time, with
the direction ¢, = 0; the 180° scattering angle decreases, and
with @, = 90°; the 270° scattering angle on the contrary in-
creases. This means that in a two-crystal scheme with large
scattering angles, an estimate of the deviation of the cone
shape of the SPDC is required in order for the radiation gen-
erated in two sequentially arranged nonlinear crystals to spa-
tially coincide.

It is found that the negative effect of polarization devi-
ation on the degree of quantum entanglement (cohesion)
in a two-crystal scheme when using biaxial crystals can
be improved by choosing the optimal parameter ¢, deter-
mined by the ellipticity of the pump polarization. At the
same time, at |s,| = |s,|, the maximum degree of quantum
entanglement can be achieved, and at |s,| # |s,|, the entan-
glement can only be partially restored. This result will make
it possible in the future to create sources of polarization-en-
tangled photon pairs with a degree of entanglement close
to the maximum.
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