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1. INTRODUCTION
The study of the evolution of the cosmic string network 

in the process of its formation during phase transitions in the 
early Universe involves the study of processes that occur during 
close flights of strings and during their collisions. In these sit-
uations, taking into account the vacuum (Casimir) interaction 
of strings can be significant [1, 2].

For the first time, an estimate of this effect for the case 
of parallel infinitely thin strings was obtained in [3]. Subsequent-
ly, the inaccuracy made there was corrected by various methods 
in the works [4-6]. In all these works, the authors limited them-
selves to the case of a massless field.

The Casimir interaction of strings is considered below 
in a relatively simple formulation, yet admitting an analytical 
solution. As in the works listed above, we will limit ourselves 
to looking at a static system of parallel infinitely thin strings 
and a real scalar field but we will not limit ourselves to the case 
of a field mass equal to zero.

The motivation for such a task statement is the following. 
First of all, we note that the energy of the vacuum interaction 
of strings per unit of length has the dimension of the square 
of the inverse length and of the dimensional quantities can de-
pend only on the distance between the strings d, the radius of the 
strings a and the Compton length of the quantized field

under consideration lc = m−1. All the listed values are dimen-
sionally dependent. But the Compton length for the heaviest 
currently known particle (t-quark) is lc ∼ 10-15 cm, and the 
thickness of GUT strings is a ∼ 10-28 cm, which is many or-
ders of magnitude less. In this case, the distance between the 
strings is d  2a. In this situation, if we limit ourselves to the 
distances d, which are much greater than the thickness of the 
strings, then the strings can be considered as infinitely thin. 
Then the energy of interaction of two strings parallel to the 
z axis, attributed to the unit of string length, can depend only 
on d and the Compton length of the field under considera-
tion and, therefore, can always be represented as 

	 ( )µ µ
−

π ∫1 2
2

4= , = ,
15

casE
md Z dz

Z d
	 (1)

where μ1,2  is  the mass of  the string per unit length, F  is a 
real-valued function. The coefficient before F is determined 
for convenience considerations, it is further selected in such 
a way that it coincides with the energy of the Casimir inter-
action of infinitely thin strings in the case of a scalar field 
with minimal coupling at zero field mass. 

Let’s consider the behavior of the function F(z) when 
z = md tends to zero. This limit can be considered as a tran-
sition to the case of a massless field at finite values of d and, 
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consequently, when we choose the coefficient in (1), this limit 
implies, F = 1. On the other hand, with equal bases, this limit 
can also be considered as the limiting transition d → 0 at finite 
values of mass. Thus, the scale at which the mass effect will 
be significant is the Compton length, and at distances between 
strings smaller or of the order of the Compton length (but larger 
than the transverse size of the strings), the mass effect will not 
be significant and the partial contribution of massive modes 
to the energy of the vacuum interaction of strings will be com-
parable with the contribution of a massless field. 

The work uses a system of units G = ћ = c = 1 and a space-
time metric with a signature (+,−,−,−).

2. BACKGROUND SPACE METRIC
Consider a four-dimensional spacetime, which is a direct 

product of a two-dimensional Minkowski space on a two-di-
mensional Riemann surface. As is known, in this case, by an ap-
propriate choice of coordinates, the metric of the considered 
space-time can always be reduced to the form 

	 ( )−σ− − +2 2 2 ( ) 2 2
1 2= ,ds dt dz e dx dxx 	 (2)

where 1 2= ( , ).x xx
Let

	 ( ) ( )= ,a a
a

σ σ −∑x x x 	 (3)

( ) ( ) − − + −  

1/22 2
1 1 2 2= ,a a ax x x xx x

where xa is a set of fixed points. In this case, the scalar cur-
vature has the form 

	 = = ,a E a
a a

R R eσ∆ σ∑ ∑ 	 (4)

where ∆E  is a two-dimensional Euclidean Laplacian. And 
if the supports of the partial contributions of ∆Eσa are com-
pact and do not overlap, then we get an ultrastatic spacetime 
whose curvature in the plane (x1x2) is different from zero only 
in a set of non-overlapping compact neighborhoods of xa.

Let’s choose the functions σa in the form 

	 ( )σ − β −= 2 1 ln ,a a ax x 	 (5)

where 0 < βa < 1 for all a. As it was shown in [7], the metric 
obtained in this way is a solution to the Einstein equation, 
in the right part of which there is an energy-momentum ten-
sor of the form 

	
( )

( ) ( )( ) 2

, ,

diag 1,1,0,0 ,a a
a

T t z

e
µν

σ

=

= µ δ −∑x

x

x x 	 (6)

− β
µ

1
= ,

4
a

a

and the corresponding solution corresponds to  the space-
time of a  system of parallel infinitely thin cosmic strings. 
In this case, the two-dimensional surface (x1x2) is a local-
ly flat hypersurface with a set of conical features localized 
at points xa, and the parameter µa makes sense of the linear 
energy density of the a-th string and determines the angle 
deficit associated with the a-th conical feature 

( )δϕ πµ π − β= 8 = 2 1 .a a a

In the case of single infinitely thin string, the features 
of space-time are the absence of any dimensional parameters 
in the metric and a high degree of symmetry. The former makes 
it possible to assert that in the case of a massless field, the vacu-
um mean of the energy-momentum tensor operator can depend 
only on the distance to the singularity and in four space-time 
measurements 

−
µν 

4.
ren

vac
T r

The latter makes it possible to separate the variables in the 
field equation, construct an analytical expression for the cor-
responding Green’s function, and calculate the renormalized 
vacuum mean of the energy-momentum tensor operator [8-12]. 
In the case of two or more strings and massive fields, the latter 
is not possible and forces the use of methods of perturbation 
theory [4-6]. At the same time, the ability to work within the 
framework of perturbation theory is provided by the smallness 
of the parameters (1−β). It is assumed that for cosmic strings 
considered within the framework of the Grand Union Theory, 
the value of the parameters (1 − β) is of the order 10-6.

3. VACUUM INTERACTION
The case of a massive real-valued scalar field j corresponds 

to the choice of action in the form of

( ) ( ) ( )41= , ,
2

S d x x L x xϕ − φ ∂ φ∫

where the field operator

( ) ( )∂ −  

2, = ,L x g m+
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µ
µ∇ ∇ =

is the Laplace-Beltrami operator.
We limited ourselves to the case of a scalar field with mini-

mal coupling. This is due to the fact that in the case of metric (2) 
with a conformal factor (5) considered below, a non-minimal 
relationship leads to the appearance of a potential field in the 
equation with δ-shaped features. The appearance of such po-
tential features requires a separate consideration and the results 
of calculations may differ depending on how such features are 
interpreted [13, 14].

Let’s represent the operator L(x, ∂) as

	 ( ) ( ) ( )∂ ∂ + + δ ∂2 2, = , ,L x m L x 	 (7)

∂ ∂ − ∂ − ∂ − ∂2 2 2 2 2
1 2= .t z

Here and further, scalar products of 4-vectors are un-
derstood in the sense of the metric of the Minkowski space. 
In this case, the operator δL(x, ∂) corresponding to metric 
(2) has the form

	 ( ) ( )( )δ ∂ Λ ∂ − ∂ +2 2 2, = t zL x mx 	 (8)

( ) −σΛ −( )= 1.e xx

The value that is often used in the study of vacuum ener-
gy is the effective action. In the Schwinger–DeWitt approach, 
it can be represented as

= trln = ln det ,
2 2eff
i i

W L L

where L is understood as an operator in an abstract Hilbert 
space, where the basis vectors x  are eigenvectors of a com-
muting set of  Hermitian operators x̂µ  with conditions 
of normalization 

( )′ ′δ −(4)| =x x x x

and completeness 

∑ = .
x

x x 1

In this case, the trace of the operator is defined as  

∫ 4= ,trQ d x x Q x

and in the coordinate representation, the matrix element has 
the form 

( ) ( )′ ′∂ δ −(4)= , ,xx L x L x x x

see [15-17].
The trace defined in this way during the calculation makes 

it possible to move to another orthonormal basis, as which 
we will choose the Fourier basis.

Further, it is known that in the case when external factors 
(metric, boundaries, external fields, etc.) do not explicitly de-
pend on time, the effective action of Weff is proportional to the 
total vacuum energy of Evac, namely:

= ,eff vacW T− 

where T  is  the total time [18] (see also [19]) and, conse-
quently, within the framework of the tr ln-formalism 

	 = ln det .
2vac
i

L
T

− 	 (9)

If  the operator δL , included in (7) can be considered 
as a small perturbation, then we have 

	

( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

−

−

−

− −

∂ + + δ =

 
= ∂ + + + ∂ + δ = 

 
 

∂ + + + ∂ + δ = 
 
 

∂ + + ∂ + δ − 
 

 
− ∂ + δ ∂ + δ + 

 

2 2

12 2 2 2

12 2 2 2

12 2 2 2

1 12 2 2 2

ln det = ln det

ln det ln det 1

= tr ln tr ln 1

= tr ln tr

1 tr ...
2

L m L

m m L

m m L

m m L

m L m L

	 (10)

However, the resulting formal expression is well defined only 
if the operators included in it are operators with a trace [20]. 
In our case, this is not the case, and when calculating traces, 
regularization will be required, as which we will choose dimen-
sional regularization.

In the Fourier basis, the traces available in (10) are reduced 
to the standard expressions for quantum field theory. In par-
ticular, the first two terms of (10) in the framework of the di-
mensional regularization method are reduced to the expression 

	

( ) ( )

( )
( )( )

( )
( )

− 
∂ + + ∂ + δ = 

 
 Γ − = − Λ + =

π

 Γ − = − −
π

∫

∫

12 2 2 2

2
/2

2
/2

tr ln tr

/ 2
1

4
/ 2

,
4

D
D

D
D

m m L

D
iTZ m d x

D
iTZ m g d x

x

x

	 (11)
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− ε= 4 2 .D

The corresponding contribution to the effective action 
coincides with the first term of the Schwinger–DeWitt ex-
pansion and is discarded during renormalization [17].

Thus, in order to isolate the Casimir contribution to the total 
vacuum energy in the first non-decreasing order of perturbation 
theory, we must limit ourselves to the third term of decompo-
sition (10): 

	 ( ) ( )1 12 2 2 2= tr .
4vac
i

m L m L
T

− − 
∂ + δ ∂ + δ  

 	 (12)

In the Fourier basis, this expression takes the form 

	
( ) ( )

( )( ) ( )
( )

4 4

4 4 22 2 2

, ,
= ,

4 2 2
vac

L k i p k L k ipi d k d p
T p m p k m

δ + δ −

  π π − + −    

∫ 	 (13)

where

	 ( ) ( ) ∂→−
 δ δ ∂ ∫ 4, = , | .ikx

ipL k ip d xe L x 	 (14)

In our case, from (8) we get 

	 ( ) ( )( )δ −Λ − −2 2 2
0, = zL k ip k p p m 	 (15)

and thus, the vacuum energy is determined by the expression 

	

( ) ( )
( )

( )
( ) ( )

4 4

4 4

22 2 2
0

22 2 2

=
4 2 2

.

vac

z

i d k d p
T

p p m

p m p k m

k k

×
π π

− −
× ×

  − + −    
× Λ Λ −

∫

	 (16)

When obtaining expression (16), it was taken into account 
that 
	 ( ) ( ) ( ) ( )Λ π δ δ Λ2 0= 4 ,zk k k k 	 (17)

where Λ( )k  is two-dimensional Fourier image of the function 
Λ( )x , 1 2= ( , ).k kk  Therefore, 0 = = 0.zk k

The 4d p integral in expression (16) diverges, but has the 
standard form for the dimensional regularization method.

Wick rotation 

−0 0 4 4 2 2= , = , =E E Ep i p d p id p p p

and further replacement of  4d p by  −µ 4 D D
Ed p , − ε= 4 2D , 

bring expression (16) to the form 

	

( ) ( )

( )
( )

( ) ( )

4 4

4

22 2 2
0

22 2 2

=
4 (2 )

,
2

D
reg
vac

D zE E
D

EE

d k
k k

T

p p md p

p m p k m

−µ− Λ Λ − ×
π

+ +
×

 π + + +  

∫

∫




	 (18)

where µ  is an arbitrary scale with a dimension of mass, which 
is introduced to preserve the dimension of the regularized 
expression (18).

The internal D
Ed p  integral has a typical form for quantum 

field theory and is calculated using Feynman parameterization 
(see, for example, [21]). In the subsequent 4d k  integration, 
we will face the fact that the integrand contains the square Λ( )k  
(17), i.e. the squares δ 0( )k  an δ( )zk . We deal with them in the 
standard way: 

( ) ( ) ( )
( ) ( )

 δ δ δ =  
δ

= δ
π π∫

2
0 0

0
0 0

0 =0

= 0

| = .
2 2

ik t
k

k k

k T
e dt k

Similarly, for the integration of  zk : 

( ) ( ) δ δ   π

2
= .

2
z zZ

k k

As a result, for the regularized vacuum energy, we get 

	

( ) ( )
( ) ( )

( ) ( ) ( )

2

/2 2

1
2 2 4

0

2

=
4 4 2

2 2 2 1

,

reg
vac D

Z d k

d m m

−ε

− Λ Λ − ×
π π

 × α Γ − + ε ∆ + Γ − + ε ∆ + Γ ε × 

 ∆×  
 µ 

∫

∫

k k



	(19)

where

( )∆ α − α +2 2= 1 .mk

Then, decomposing ( )−ε
∆ µ 2/  in a small ε, 

	 ( )2
2 2= 1 ln ,

−ε ∆ ∆
− ε + ε 

 µ  µ


 

	 (20)

and discarding divergent members when removing the regu-
larization, we get 
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2
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∫

∫

∫

∫

k k

k k k




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	 (21)

Assuming that the exponent σ  in (8) is small and the sub-
stitution is fair

( ) ( ),a
a

Λ → − σ∑x x

we come to the expression 

	 ( ) ( )
( ) ( )

( )

2 4
2 2

,

1
22

2
0

=
4 4 2

1 ln ,

ren
vac a b

a b

Z d k

d

σ σ − ×
π π

∆× αα − α
µ

∑∫

∫

k k k



	 (22)

where, when choosing σa  in the form of (5), the Fourier im-
age of the partial conformal factor is equal 

	 ( ) 2
16

= .aia
a e ⋅πµ

σ − k xk
k

	 (23)

We see that the terms of the sum with ≠a b correspond 
to the Casimir (depending on the relative distances between the 
strings) in (22), and under the assumption made, the Casimir 
interaction between the strings can be approximately considered 
as a pair. Therefore, it is enough to limit yourself to two parallel 
strings, located at a distance d from each other. At the same time, 
integration over α carried out in (19), leads the expression for 
the Casimir energy to the form

	 ( )
( )

2
1 2

2

2 4 2 4

8
=

15 2

2 6 47 3 6ln 1 ,
60 2

i
cas

Z d k
e

m
A x

x x x x

⋅µ µ
×

π

    
× + − + − − +    µ     

∫ k d



	 (24)

where 

( ) ( )+
2= , = 1 2 / Arsh .

2
x

x A x x
m
k

Thus, the further transformation of the expression (24) 
is  reduced to  calculating the two-dimensional Fourier 

integral of  a  rather cumbersome expression. Understood 
in  the sense of generalized functions, the Fourier images 
of the terms of the integral expression that do not contain 
the function A(x) are known [22]: 

	 ( )
( )

2( 1)2
2 2 3 2

1
= ln , .

2

ie
d k

λ⋅ λ−
λ λ−

− π
λ ∈

Γ λ∫
k d

d d
k

 	 (25)

For λ = 0 the result is proportional to δ2( )d  and, conse-
quently, is zero.

The remaining integrals have the form 

	
( )

( )
2

2 2= / , = 0,1,2.
2

i

n n
d k e

c A m n
⋅

π
∫

k d
k

k
	 (26)

Since these integrals represent Fourier images of the cylin-
drically symmetric functions of the variable =| |k k , the transfor-
mation result will be a cylindrically symmetric function of the 
variable =| |d d . This makes it possible to perform integration 
along the polar ang ϕ in the plane 1 2( , )k k  using the integral [23] 

	 ( )
π

ϕϕ π∫
2

cos
0

0
= 2 .iqrd e J qr 	 (27)

But the remaining one-dimensional integrals by dk 

	 ( ) ( )−
π∫ 1 2

0= / , = 0,1,2,
2

n
n

dk
c J kd k A k m n 	 (28)

if we understand them as Riemann integrals, diverge either 
on the upper ( 0c ), or on the lower ( 1 2,c c ) limits.

The method we propose is to represent them as a sum 
of convergent Riemannian integrals and known Fourier imag-
es defined in terms of generalized functions. 

To clarify the nature of the divergence of the integrals (28), 
we need to know the behavior of  ( )A x  for small and large values 
of the argument.

For small argument values it expands as 

	 ( ) ( )+ − + +2 4 6 81 1 1= 1 ,
12 120 840

A x x x x x 	 (29)

while the asymptotic expansion ( 1)x  is  given by  the 
expression

	 ( ) 2 4 6
2ln 1 2ln 1 / 2 ln= ln .x x x

A x x
x x x

 + −+ − +   
 	 (30)

Then, to regularize each of the cn integrals, depending on the 
nature of the non-integrable feature, we subtract from the in-
tegrand and add the necessary number of corresponding ex-
pansion terms (counter-terms), making sure that the subtracted 
counter-terms make it possible to remove the convergence at the 
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limit where it exists, but without a new divergence at another 
limit of integration, and so that the integral of the difference 
converges in the Riemann sense. It is clear that this makes sense 
only if the images of the counter-terms defined in the sense 
of generalized Fourier functions are known.

In this case, the subtracted counter-terms will regularize the 
non-integrable singularity of the integrand, and we get an in-
tegral expression well-defined as a Riemann integral, to which 
well-known, defined in the sense of generalized Fourier func-
tions, images of individual counter-terms are added. 

The peculiarity of the proposed procedure is that the sub-
tracted counter-terms will be determined by the convergence 
of the one-dimensional integral (28), and we will carry out the 
corresponding identical transformation of subtraction-addition 
in the two–dimensional Fourier integral (26).

Applying the described procedure, we obtain the following 
expression for the Casimir energy: 

	

( )1 2
0

0
2 4

2 4
1 2
22 4

2 4

4
=

15

1 2 6
4

.
153ln 6

2

cas
Z

dkkJ kd

k m m
A

m Zk k
dk m m

m k k

∞µ µ
×

π

    − + −    µ µ  × − 
 − + −  

∫

	 (31)

It is noteworthy that the non-integrable term in (26) co-
incides with the known result for a massless scalar field. Thus, 
the dependence of the Casimir effect on mass, which interests 
us, is entirely determined by the integral term standing in (26), 
and for the function = ( ) / (0)vac vacm    formally introduced 
in (1), we obtain the clear expression

	
( )

∞
− ×

  
  × − + − + − +    

∫ 2
0

0
2 4 2 4

2 4 2 4

=

31 2 6 ln 6 1,
2

d dkkJ kd

m m k m m
A

mk k k k

	 (32)

where the integral already converges as a Riemannian one.
After the replacement of the variable = / 2s k m the integral 

is split into three:

( ) ( ) ( ) ( ) 
− − + 

 
 2

0 1 2
1 3= 1 ,
2 8
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where ( )nh z  are defined as 
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0
= 1 Arsh ln 2 ,h z dsJ sz s s s s

∞
 + −  ∫
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1 2

0
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h z ds s s s

s

∞  
+ − − 

  
∫

They are integrals to which regularized two-dimensional 
Fourier nc  integrals are reduced. These integrals can be cal-
culated in the following form: 

( )  
+ − 
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where ⋅( )nK  is the Macdonald function, ⋅( )U  is the special 
Macdonald integral function of the following form:

	 ( ) 2
02= ,

2
z

dx x
U z K

x

∞  
  ∫ 	 (35)

which can also be written using the Meijer G-function [24]: 

Fig. 1. Graph ( )z
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As the result for the function ( )z  we obtain
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The graph ( )z  is shown in Fig. 1. 
It follows from the resulting expression that when  1z  

( ) ( )− − π − + + 
 

  3
2

75 25031= 15 .
16 2 128

zz e z
z z

Thus, at distances greater than the Compton length of the 
massive field, the effect is suppressed exponentially.

In the opposite extreme case, when  1z  

( ) ( ) 
+ + γ + + 

 
 2 45 1= 1 ln ln ,

8 4 3
z

z z z z

where γ is the Euler-Mascheroni constant, and we see that at 
 cd l  the contribution of massive modes to the Casimir en-

ergy, as it follows from the qualitative considerations, is com-
parable to the contribution of a massless field.

Fig. 2. The energy of the Casimir attraction of two strings 
as a function of distance (in units ( =1) = 1m

cl ) in double 
logarithmic scaling: for massive fields with = 0.5m  
(dashdotted curve), = 1m  (solid), = 2m  (dotted) and 
for a massless field (dashed, with a tangent of the angle 
of inclination to the horizontal −2)

Graph of the dependence of the Casimir energy

	 ( )1 2
2

4
= 2

15cas
Z

md
d

µ µ
−  	 (38)

versus the distance between the interacting strings on a dou-
ble logarithmic scale is  shown in Fig. 2. The dashed line 
corresponds to the massless limit.

4. CONCLUSION
In the framework of the tr ln-formalism, the vacuum in-

teraction of cosmic strings was considered in the approxima-
tion, when their transverse size can be ignored, but the mass 
of the quantized field is not assumed to be zero. The main result 
is that at distances less than the Compton length, but notice-
ably exceeding the radius of the strings, the partial contribu-
tion of massive fields to the energy of the Casimir interaction 
of strings is comparable to the contribution of a massless field. 
Thus, at small distances, in this sense, the mass in the first ap-
proximation can be neglected. However, if this distance can 
no longer be considered large compared to the transverse size 
of the strings, then it is no longer possible to neglect the radius 
of the strings. In this case, we again have two parameters with 
the same dimension, but in the present case these ones are the 
radius of the strings a and the distance between them d. As a re-
sult, the evaluation formula (1) is replaced by

	 1 2
2

4= .
15

cas a
Z dd

µ µ  
− Φ  π  


	 (39)

It follows that the scale on which the transverse size of the 
strings is affected, is their radius. As in the case discussed in the 
Introduction, for → = / 0z a d  the function Φ ( )z  tends to one. 
Indeed, if this limit is defined as a limit transition → ∞d , 
it is precisely obvious that at such distances the strings must 
interact as infinitely thin. Therefore, the result must coincide 
with the energy of the interaction of two infinitely thin strings, 
i.e. with the coefficient at Φ. The answer should be the same 
at a tending to zero, but in the case of thick strings 2d a .  
Therefore, a noticeable difference of Φ from unity and, conse-
quently, a noticeable dependence of the Casimir energy on the 
transverse size of the strings will occur if the distance between 
the strings does not much exceed 2a. In the work [25] we have 
shown that this is indeed the case. Moreover, at these distances, 
the vacuum interaction energy of thick strings can even notice-
ably exceed a similar value for infinitely thin strings with the 
same mass per unit length. 
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The results obtained may be useful in studying the interac-
tion of strings during near-collision, their collision and their 
entanglement and reconnection. 
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