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Abstract. Within the tr In-formalism we study the influence of quantized field on the vacuum interaction of
cosmic strings. We consider the real-valued massive scalar field with minimal coupling. It is shown that at the
inter-string distances, which visibly exceed the Compton length /., = m™!, the appearance of mass leads to the
exponential decay of the effect. Whereas at small with respect to /, distances, but much larger than the string’s
width, the mass effect becomes insignificant; and the massive field contributes to the Casimir energy compa-

rably with the massless field.
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1. INTRODUCTION

The study of the evolution of the cosmic string network
in the process of its formation during phase transitions in the
early Universe involves the study of processes that occur during
close flights of strings and during their collisions. In these sit-
uations, taking into account the vacuum (Casimir) interaction
of strings can be significant [1, 2].

For the first time, an estimate of this effect for the case
of parallel infinitely thin strings was obtained in [3]. Subsequent-
ly, the inaccuracy made there was corrected by various methods
in the works [4-6]. In all these works, the authors limited them-
selves to the case of a massless field.

The Casimir interaction of strings is considered below
in a relatively simple formulation, yet admitting an analytical
solution. As in the works listed above, we will limit ourselves
to looking at a static system of parallel infinitely thin strings
and a real scalar field but we will not limit ourselves to the case
of a field mass equal to zero.

The motivation for such a task statement is the following.
First of all, we note that the energy of the vacuum interaction
of strings per unit of length has the dimension of the square
of the inverse length and of the dimensional quantities can de-
pend only on the distance between the strings d, the radius of the
strings a and the Compton length of the quantized field

39

under consideration /, = m™!. All the listed values are dimen-
sionally dependent. But the Compton length for the heaviest
currently known particle (t-quark) is /, ~ 107" cm, and the
thickness of GUT strings is @ ~ 102® cm, which is many or-
ders of magnitude less. In this case, the distance between the
strings is d > 2a. In this situation, if we limit ourselves to the
distances d, which are much greater than the thickness of the
strings, then the strings can be considered as infinitely thin.
Then the energy of interaction of two strings parallel to the
z axis, attributed to the unit of string length, can depend only
on d and the Compton length of the field under considera-
tion and, therefore, can always be represented as

(M
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where W, , is the mass of the string per unit length, Fis a
real-valued function. The coefficient before Fis determined
for convenience considerations, it is further selected in such
a way that it coincides with the energy of the Casimir inter-
action of infinitely thin strings in the case of a scalar field
with minimal coupling at zero field mass.

Let’s consider the behavior of the function F(z) when
z = md tends to zero. This limit can be considered as a tran-
sition to the case of a massless field at finite values of 4 and,
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consequently, when we choose the coefficient in (1), this limit
implies, F = 1. On the other hand, with equal bases, this limit
can also be considered as the limiting transition d — 0 at finite
values of mass. Thus, the scale at which the mass effect will
be significant is the Compton length, and at distances between
strings smaller or of the order of the Compton length (but larger
than the transverse size of the strings), the mass effect will not
be significant and the partial contribution of massive modes
to the energy of the vacuum interaction of strings will be com-
parable with the contribution of a massless field.

The work uses a system of units G =4 =c¢ = 1 and a space-
time metric with a signature (+,—,—,—).

2. BACKGROUND SPACE METRIC
Consider a four-dimensional spacetime, which is a direct
product of a two-dimensional Minkowski space on a two-di-
mensional Riemann surface. As is known, in this case, by an ap-
propriate choice of coordinates, the metric of the considered
space-time can always be reduced to the form

ds® = di* — dz? - e—““‘)(dxf + dxg), )

where X = (x,x,).
Let

olx) = So, (x,) ®

1/2
|x - xa| = [(x1 —xal)2 + (x2 —va)z} ,

where X, is a set of fixed points. In this case, the scalar cur-
vature has the form

R=3K, =30, @
a a

where Ay is a two-dimensional Euclidean Laplacian. And

if the supports of the partial contributions of A,c, are com-

pact and do not overlap, then we get an ultrastatic spacetime

whose curvature in the plane (x,x,) is different from zero only

in a set of non-overlapping compact neighborhoods of x,.
Let’s choose the functions 6, in the form

6, =2(1-B,)In[x - x|, (5)

where 0 < 8, <1 for all a. As it was shown in [7], the metric
obtained in this way is a solution to the Einstein equation,
in the right part of which there is an energy-momentum ten-
sor of the form

GRATS, SPIRIN

Tuv(t,z,x) =

- B x Jaag(110.0),  ©

1-B
Mo ==

and the corresponding solution corresponds to the space-
time of a system of parallel infinitely thin cosmic strings.
In this case, the two-dimensional surface (x,x,) is a local-
ly flat hypersurface with a set of conical features localized
at points x,, and the parameter 4, makes sense of the linear
energy density of the a-th string and determines the angle
deficit associated with the a-th conical feature

8¢, = 8nu, = 2n(1—Ba).

In the case of single infinitely thin string, the features
of space-time are the absence of any dimensional parameters
in the metric and a high degree of symmetry. The former makes
it possible to assert that in the case of a massless field, the vacu-
um mean of the energy-momentum tensor operator can depend
only on the distance to the singularity and in four space-time
measurements

<T >ren 4
~Fr .
W/ vac

The latter makes it possible to separate the variables in the
field equation, construct an analytical expression for the cor-
responding Green’s function, and calculate the renormalized
vacuum mean of the energy-momentum tensor operator [8-12].
In the case of two or more strings and massive fields, the latter
is not possible and forces the use of methods of perturbation
theory [4-6]. At the same time, the ability to work within the
framework of perturbation theory is provided by the smallness
of the parameters (1—f). It is assumed that for cosmic strings
considered within the framework of the Grand Union Theory,
the value of the parameters (1 — B) is of the order 10°.

3. VACUUM INTERACTION

The case of a massive real-valued scalar field ¢ corresponds
to the choice of action in the form of

s, = _% Jatxo(x)L(x.0)0(x).,

where the field operator

L(x,0) =\/§(D + mz),

JETP, Vol. 165, No. 1, 2024



CASIMIR INTERACTION OF COSMIC STRINGS: MASSIVE FIELD 41
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is the Laplace-Beltrami operator.

We limited ourselves to the case of a scalar field with mini-
mal coupling. This is due to the fact that in the case of metric (2)
with a conformal factor (5) considered below, a non-minimal
relationship leads to the appearance of a potential field in the
equation with 8-shaped features. The appearance of such po-
tential features requires a separate consideration and the results
of calculations may differ depending on how such features are
interpreted [13, 14].

Let’s represent the operator L(x, 0) as

L(x,9) = (97 +m*)+ 8L(x.), (7)

9*=0; -0y —93-22.

Here and further, scalar products of 4-vectors are un-
derstood in the sense of the metric of the Minkowski space.
In this case, the operator dL(x, d) corresponding to metric
(2) has the form

8L (x,9) = A(x)(0] =32 +m’|

A(x) =9 1,

®)

The value that is often used in the study of vacuum ener-
gy is the effective action. In the Schwinger—DeWitt approach,
it can be represented as

w . =

off 5 trinL = 5lndetL

where L is understood as an operator in an abstract Hilbert
space, where the basis vectors |x> are eigenvectors of a com-
muting set of Hermitian operators x* with conditions
of normalization

<x | x'> =59 (x - x')

and completeness

In this case, the trace of the operator is defined as
rQ = Jd4x<x|Q|x>,

and in the coordinate representation, the matrix element has
the form
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(x

x'> = L(x,ax)8(4)(x - x’),

see [15-17].

The trace defined in this way during the calculation makes
it possible to move to another orthonormal basis, as which
we will choose the Fourier basis.

Further, it is known that in the case when external factors
(metric, boundaries, external fields, etc.) do not explicitly de-
pend on time, the effective action of W,,is proportional to the
total vacuum energy of £,,., namely:

W

= -TE

vac’

where T is the total time [18] (see also [19]) and, conse-
quently, within the framework of the tr In-formalism

i
Eone = —ﬁln det L. &)

If the operator 8L, included in (7) can be considered
as a small perturbation, then we have

Indet L = Indet(9” + m” + 5L ) =
= Indet(9? +m? ) + lndet{l (07 m2)_18L} -
= trin(9% + m?) + trln{l (07 mz)_ISL} = (10)
= w0 )1 (07« ) oL |-

_%t{(az + mz)il 8L(82 + mz)il SL} +

However, the resulting formal expression is well defined only
if the operators included in it are operators with a trace [20].
In our case, this is not the case, and when calculating traces,
regularization will be required, as which we will choose dimen-
sional regularization.

In the Fourier basis, the traces available in (10) are reduced
to the standard expressions for quantum field theory. In par-
ticular, the first two terms of (10) in the framework of the di-
mensional regularization method are reduced to the expression

trln(82 + mz) + tr[(a2 + mz)ISLJ =

r[mz]J

D)2

D/2
D/2 \l d2

=—iTZm (11)

x:

= —iTZm?
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D=4-2¢.

The corresponding contribution to the effective action

coincides with the first term of the Schwinger—DeWitt ex-

pansion and is discarded during renormalization [17].
Thus, in order to isolate the Casimir contribution to the total
vacuum energy in the first non-decreasing order of perturbation

theory, we must limit ourselves to the third term of decompo-

sition (10):

£, = #tr((eﬂ + mz)_lesL(a2 + mz)_ISLJ. (12)

In the Fourier basis, this expression takes the form

i pd'% d'p SL(ki(p+k))SL(~k,ip)

vac > (13)
4T (on)? (2n)' [0 - m2]{(p vk - mz}
where
8L(k.ip) = [d*xe™[3L(x,0) 1, | (14)
In our case, from (8) we get
8L (k.ip) = ~A(k)( pg - p2 —m’) (15)

and thus, the vacuum energy is determined by the expression
_ ik dp
AT on) (2m)
2
(p§ -pl- mz)

[pz B mz]{(p . k)2 _ mz}

x A(k)A(~k).

X

X (16)

When obtaining expression (16), it was taken into account

that
A(k) = 4n73(k°)3(k% ) A (K), (17)

where A(k) is two-dimensional Fourier image of the function
A(x), k = (k',k?). Therefore, k° = k% = 0.

The d* p integral in expression (16) diverges, but has the
standard form for the dimensional regularization method.

Wick rotation

p’=ipy, dip=id*p,, P’ =-p;

and further replacement of dt p by ;14*0 dP pp, D=4-2¢,
bring expression (16) to the form

reg _ _ﬂ4_DJ‘ d*k

vac AT (27‘5)4

A(k)A(=k) x

(P§4—pf4—nﬂ)2 (18)

deDpE ,
()" (57 4.7) | (p+ ), +

where [1 is an arbitrary scale with a dimension of mass, which
is introduced to preserve the dimension of the regularized
expression (18).

The internal d? Py integral has a typical form for quantum
field theory and is calculated using Feynman parameterization
(see, for example, [21]). In the subsequent d*k integration,
we will face the fact that the integrand contains the square A(k)
(17), i.e. the squares S(ko) an 8(k*). We deal with them in the
standard way:

(4"} = (00 -
Ay, - L)

dt =
|k0=0 n

Similarly, for the integration of k%
2 7
z - £ z
[S(k )} 2n6(k )

As a result, for the regularized vacuum energy, we get

reg —
vac

Z d*k
D)2 J.(z 2 A(k)A(_k) X

4(4r) m)
x _l[doc[2l"(—2 +€)A% 4 2m’T (-1 +€)A + mﬁ"(e)} % (19)
0
()
i)
where

Then, decomposing (A / ﬁz) in a small g,

[A] “1en 1 of?)

i i

(20)

and discarding divergent members when removing the regu-
larization, we get
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2
o= LT AK)A(K) %
4(4n) (2n)
xjdoc(A m )2 lnA2 =
s k H Q1)
= A k k X
2 2 A
xjdococ (l—oc) 1r1~—2.

Assuming that the exponent ¢ in (8) is small and the sub-
stitution is fair

A(x) > o, ()

we come to the expression

gren —

vac (

Jo (K" x

(22)

oc)2 lnA

xjdococz(l - ﬁ2,

where, when choosing 6, in the form of (5), the Fourier im-
age of the partial conformal factor is equal

o, (k) =

We see that the terms of the sum with a # b correspond

16““(1 lk X,

- (23)

to the Casimir (depending on the relative distances between the
strings) in (22), and under the assumption made, the Casimir
interaction between the strings can be approximately considered
as a pair. Therefore, it is enough to limit yourself to two parallel
strings, located at a distance d from each other. At the same time,
integration over o carried out in (19), leads the expression for
the Casimir energy to the form

1k~d

8Z
u—ll»lzj‘ d k %

cas

) (24)
m 2 6 47 3 6
In—+ A4 l-—+— |- | —=———+—
X{ nﬂ + (x)( 2 + x4] (60 Py + x4ﬂ’
where

_

2
x =1L A(x) =1+ (2/x) Ash .

Thus, the further transformation of the expression (24)
is reduced to calculating the two-dimensional Fourier
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integral of a rather cumbersome expression. Understood
in the sense of generalized functions, the Fourier images
of the terms of the integral expression that do not contain
the function A(x) are known [22]:

2 eikAd_ (_l)xn lq

|k|27‘ = A eN.

|2(x—1)

Ind|, (25)

22A—3F2(k)|u
For A = 0 the result is proportional to 82(d) and, conse-

quently, is zero.
The remaining integrals have the form
22k o

e O

Since these integrals represent Fourier images of the cylin-

n=0,1,2. (26)

drically symmetric functions of the variable k =|k|, the transfor-
mation result will be a cylindrically symmetric function of the
variable d =|d|. This makes it possible to perform integration
along the polar ang ¢ in the plane (k|, k, ) using the integral [23]

2n
j e = 2m] (qr). (27)
0
But the remaining one-dimensional integrals by dk
¢, = [ Jo(kd)k'" A(k /m), n=0,1,2, (28)
7

if we understand them as Riemann integrals, diverge either
on the upper (c,), or on the lower (c;,c,) limits.

The method we propose is to represent them as a sum
of convergent Riemannian integrals and known Fourier imag-
es defined in terms of generalized functions.

To clarify the nature of the divergence of the integrals (28),
we need to know the behavior of A(x) for small and large values
of the argument.

For small argument values it expands as

A(x) =1+—x> —Lx4 +Lx6 +O(x8), (29)
12 120 840
while the asymptotic expansion (x > 1) is given by the
expression
2Inx+1 2lnx-1/2

x? x*

A(x)=Inx + +o(lnxj (30)
b
Then, to regularize each of the c, integrals, depending on the
nature of the non-integrable feature, we subtract from the in-
tegrand and add the necessary number of corresponding ex-
pansion terms (counter-terms), making sure that the subtracted
counter-terms make it possible to remove the convergence at the
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limit where it exists, but without a new divergence at another
limit of integration, and so that the integral of the difference
converges in the Riemann sense. It is clear that this makes sense
only if the images of the counter-terms defined in the sense
of generalized Fourier functions are known.

In this case, the subtracted counter-terms will regularize the
non-integrable singularity of the integrand, and we get an in-
tegral expression well-defined as a Riemann integral, to which
well-known, defined in the sense of generalized Fourier func-
tions, images of individual counter-terms are added.

The peculiarity of the proposed procedure is that the sub-
tracted counter-terms will be determined by the convergence
of the one-dimensional integral (28), and we will carry out the
corresponding identical transformation of subtraction-addition
in the two—dimensional Fourier integral (26).

Applying the described procedure, we obtain the following
expression for the Casimir energy:

cas

_4Zp, 7
== !;dkkjo(kd)x

2 4
A(fj 1-27 + 67 |- 31)
o\ k k _4Zun,
k 3m? m* 154°
—lnzﬁ'aﬁ— F

It is noteworthy that the non-integrable term in (26) co-
incides with the known result for a massless scalar field. Thus,
the dependence of the Casimir effect on mass, which interests
us, is entirely determined by the integral term standing in (26),
and for the function 7 = £, .(m) / &,,.(0) formally introduced
in (1), we obtain the clear expression

F= —dszkMO(kd) x
0

where the integral already converges as a Riemannian one.
After the replacement of the variable s = k / 2m the integral
is split into three:

#e) =12 (2) - Jh(2)+ 3 (0]

z =2md,

where £,(z) are defined as
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ho(z) = ]odsJO (sz)[ 1+ s> Arsh s — sln2s},
0

h(z) = Tdsj"(;z)[ 1+ 5% Arsh s - s], (33)

0 N

hz(z) = Tds@l 1+5s*Arshs —s - %1

0 N

They are integrals to which regularized two-dimensional
Fourier ¢, integrals are reduced. These integrals can be cal-
culated in the following form:

e e e
o (2) Z2+4{1<0(2> 1<1<2)},

(34)

-

where K, () is the Macdonald function, U(-) is the special
Macdonald integral function of the following form:

Uz)=| %Kg [gj (35)

which can also be written using the Meijer G-function [24]:
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Fig. 2. The energy of the Casimir attraction of two strings
as a function of distance (in units lc(,m=l) =1) in double
logarithmic scaling: for massive fields with m = 0.5
(dashdotted curve), m =1 (solid), m = 2 (dotted) and
for a massless field (dashed, with a tangent of the angle
of inclination to the horizontal —2)

Jn 1

U(z) = Y30 z
(2) = m[—uz—uz—u24

2
i ]. (36)

As the result for the function F(z) we obtain

e 2,20 2,2
i [? - 1]{1{0 & - K; (5)} +

@=5 -
. 4-{§5+f}U@)+§K%§)K{§]

The graph F(z) is shown in Fig. 1.

(37)

It follows from the resulting expression that when z > 1
n _ 75 -3
Flz)=—=e*|15-—+ O
(2) = fee ( 5 (5 )}

Thus, at distances greater than the Compton length of the

25031
—F+
128>

massive field, the effect is suppressed exponentially.
In the opposite extreme case, when z < 1

59(,.2 1 4
Flz)=1+=z"|In=+vy+= +(’)(z lnz),
(2) =1+ 2% I v+ 5 [in]
where 7 is the Euler-Mascheroni constant, and we see that at
d < [, the contribution of massive modes to the Casimir en-
ergy, as it follows from the qualitative considerations, is com-
parable to the contribution of a massless field.
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Graph of the dependence of the Casimir energy

= 32 £ ()

154> (%)

cas

versus the distance between the interacting strings on a dou-
ble logarithmic scale is shown in Fig. 2. The dashed line
corresponds to the massless limit.

4. CONCLUSION

In the framework of the trln-formalism, the vacuum in-
teraction of cosmic strings was considered in the approxima-
tion, when their transverse size can be ignored, but the mass
of the quantized field is not assumed to be zero. The main result
is that at distances less than the Compton length, but notice-
ably exceeding the radius of the strings, the partial contribu-
tion of massive fields to the energy of the Casimir interaction
of strings is comparable to the contribution of a massless field.
Thus, at small distances, in this sense, the mass in the first ap-
proximation can be neglected. However, if this distance can
no longer be considered large compared to the transverse size
of the strings, then it is no longer possible to neglect the radius
of the strings. In this case, we again have two parameters with
the same dimension, but in the present case these ones are the
radius of the strings a and the distance between them d. Asa re-
sult, the evaluation formula (1) is replaced by

5cas — _iHIMZq)(ﬁ] (39)

V4 15m 42 d)

It follows that the scale on which the transverse size of the
strings is affected, is their radius. As in the case discussed in the
Introduction, forZ = a / d — 0 the function ®(Z) tends to one.
Indeed, if this limit is defined as a limit transition d — oo,
it is precisely obvious that at such distances the strings must
interact as infinitely thin. Therefore, the result must coincide
with the energy of the interaction of two infinitely thin strings,
i.e. with the coefficient at ®. The answer should be the same
at a tending to zero, but in the case of thick strings d > 2a.
Therefore, a noticeable difference of ® from unity and, conse-
quently, a noticeable dependence of the Casimir energy on the
transverse size of the strings will occur if the distance between
the strings does not much exceed 2a. In the work [25] we have
shown that this is indeed the case. Moreover, at these distances,
the vacuum interaction energy of thick strings can even notice-
ably exceed a similar value for infinitely thin strings with the
same mass per unit length.
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The results obtained may be useful in studying the interac-

tion of strings during near-collision, their collision and their

entanglement and reconnection.
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