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Abstract. The problem of non-stationary vapor-liquid nucleation is solved at a constant number of particles and a 
fixed cooling rate. An analytical approach to solving kinetic equations is developed, which correctly takes into 
account both the dependence of the work of cluster formation on its size and the non-ideality of the condensing 
vapor. Comparison with a similar approach based on the classical model reveals qualitative differences in the results. 
To assess the correctness of various approaches, simulation of the process under consideration was performed using 
the molecular dynamics method, the results of which are in qualitative and quantitative agreement with the 
proposed analytical model and are in much worse agreement with other approaches. Estimates for silicon oxide 
nucleation indicate that the significant d ifference b etween t he e quation o f s tate of c ondensing v apor and the 
ideal gas equation may be its universal property.

1. INTRODUCTION

The input of high energy density into condensed
matter results in the formation of regions where it
rapidly expands and turns into dense vapor. The
vapor then cools, which leads to nucleation with the
formation of liquid or solid microparticles. Examples
include laser evaporation [1, 2], ablation of matter
into vacuum [3, 4] and liquid [5, 6], and the formation
and evolution of regolith during the collision of
micrometeorites with the lunar surface [7].

In these and a number of other cases, the system
quickly passes through the binodal and moves toward
the spinodal until a “condensation explosion” occurs,
i.e., a violent release of microdroplets-nuclei of the
liquid phase, which transfers the system to a state
approaching quasi-stationary. With a further drop in
temperature, “freezing” of the condensation process
is possible [7]. The presence in the cooling vapor of
centers that attract monomers of the condensing vapor,
in particular, ions, leads to a more complicated picture
of the process compared to the case of homogeneous
nucleation occurring in the absence of impurities.
However, even the theory of homogeneous nucleation
is currently far from complete due to such objective
difficulties as the need to describe cluster objects
containing several dozen monomers, taking into
account the non-ideality of the condensing vapor, the
non-isothermality of the clusters, the non-stationarity
of the flow of the resulting supercritical clusters, which
are embryos of the liquid phase, etc. The theoretical
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description of the “condensation explosion” is based on
the theory of stationary homogeneous nucleation and
modeling the kinetics of non-stationary nucleation.

In the classical nucleation theory (CNT) [8–10],
a number of assumptions are made that limit its
applicability. Thus, a macroscopic interfacial tension
σ is assigned to the cluster surface, although it is
not obvious that macroscopic equilibrium quantities
are applicable to the description of a typical critical
cluster of about 50 particles (monomers). Modern
theoretical approaches [11–16] and experimental results
in a number of cases are in poor agreement [17–19].

In the works [20–27], a two-parameter model
(TPM) of “hot” clusters at temperatures between the
melting point and the critical point was proposed and
developed. It is based on the idea that the lightest
clusters are a system of virtual chains, and a cluster
of arbitrary size is a core with properties close to those
of a liquid, surrounded by a layer of particles in almost
the same state as in the lightest clusters. In particular,
it was shown that the effective surface tension of small
clusters differs significantly from this value for a flat
surface (see, e.g., [20]).

The theory of nucleation based on classical
assumptions limits the kinetic paths of cluster evolution
to condensation and evaporation of individual particles
only. However, in some systems, processes such as
fusion and fragmentation of entire clusters cannot
be excluded from consideration. This is especially
true for dense systems located near the point of
the “condensation explosion”, where the clusters in
question acquire a fractal structure [27].
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Numerical simulation is a traditional approach
to studying non-stationary nucleation; molecular
dynamics (MD) [28–37] and Monte Carlo [38–41]
methods are used. Nucleation simulation requires
ensembles of a large number of particles (at least
106), and is computationally intensive. Therefore, the
development of highly efficient analytical approaches
to solving this problem is very important, especially
since these approaches are not sufficiently developed.
In [7], an approximate solution to the problem of
explosive nucleation during rapid adiabatic expansion
of vapor into vacuum was found, and in [42, 43], using
the same method, explosive nucleation was studied
at given temperature and vapor pressure as functions
of time. In the above-mentioned works, vapor was
considered as an ideal gas. However, already from
the formulation of the cluster vapor model [21, 26], in
which a mixture of ideal gases of the lightest clusters is
considered, it follows that this is, generally speaking,
not the case.

In this paper, the analytical approach [42] is
modified to take into account both the correct size
dependence of the cluster formation work and the non-
ideality of the condensing vapor. It turns out that
the second factor has a more significant effect on
the explosive nucleation process than the first, and
the non-ideality effect is quite significant at both low
and high supersaturations at the moment of explosive
nucleation. Taking this effect into account leads to a
qualitative difference from the most commonly used
theories of nucleation, since it predicts a “condensation
explosion” in the metastable region, whereas if non-
ideality were not taken into account, the system would
have to be in the region of lability.

The non-ideality of condensing vapor was discussed
in [44], where it was first pointed out that the rate of
formation of liquid-phase nuclei from supersaturated
vapor is determined not by the ratio of the actual
vapor pressure to the saturation pressure, but by
the ratio of the partial pressure of monomers in the
supersaturated vapor to their partial pressure on the
binodal at the same temperature. Since the vapor
becomes non-ideal due to the formation of clusters in
it, the second ratio turns out to be noticeably smaller
than the first. However, specific methods for calculating
the partial pressure of monomers are not discussed in
this work. Such a method was proposed in [45], where
the equation of state of non-ideal vapor was described
using virial expansion. However, since direct calculation
of the integrals determining the virial coefficients
encounters significant difficulties, the authors introduce
an additional free parameter determined from the best

fit to experiment. Note that in the model used in this
work, the introduction of an additional parameter is
not required, since the equation of state of a non-
ideal vapor is modeled on the basis of the TPM using
the same parameters that determine the dimensional
correction to the work of cluster formation and, in
principle, can be taken from independent sources.

In this work, MD simulation of non-stationary
nucleation in a Lennard-Jones system was carried
out under conditions where the rate of formation
of supercritical clusters can be considered quasi-
stationary, which made it possible to compare
the results of MD simulation with the results of
the analytical approach proposed in the work and
demonstrate their satisfactory agreement.

In Section 2 the basic principles of the cluster vapor
model based on the TPM are formulated, which allows
one to calculate the compressibility factor of a non-ideal
vapor (to obtain its equation of state). The procedure
for simulation of the “condensation explosion” in the
Lennard-Jones system, as well as the simulation results,
are discussed in Section 3. The analytical theory of
the “condensation explosion”, taking into account the
non-ideality of the vapor, is presented in Section 4,
and the results of calculations based on it and a
comparison with MD simulation, as well as the results
of calculations for silicon oxide, are presented in Section
5. The main conclusions are formulated in Section 6.

2. CLUSTER VAPOR MODEL

The non-ideality of the condensing vapor means
that the average potential energy of interaction of
the monomers cannot be neglected in comparison
with their average kinetic energy. In this paper, we
consider a homogeneous system in which both the
gas and liquid phases are formed by the same stable
molecules, which are considered monomers (particles).
The interaction of monomers can lead to the formation
of their bound states, called clusters, the average
residence time in which for a monomer is much greater
than the ratio of the characteristic length of action
of interparticle forces to the thermal velocity of the
monomer. The interaction between the monomers that
form each cluster will be called bound interaction, and
the remaining types of interaction, free interactions.
The latter, therefore, include interactions between
monomers that are not part of clusters, between these
monomers and clusters, and between different clusters.
A situation is possible when the average energy of
bound interaction significantly exceeds the average
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Fig. 1. Cluster model

energy of free interactions, with the latter being much
less than the average kinetic energy of the monomers.
Then we can neglect the energy of free interactions,
considering that all interactions of monomers are
reduced to the formation of molecular clusters, and
treat a mixture of ideal gases of monomers and clusters,
in which reactions of the form Ak + Al � Ak+l

occur, where Ak denotes a cluster consisting of k

monomers; k, l = 1, 2, . . .. In this case, the vapor as
a whole turns out to be non-ideal. The described vapor
model was first proposed in [46, 47], and then used in
various studies (e.g., [26, 44]). Its applicability in the
supersaturated vapor region is beyond doubt, since the
cluster number density there increases infinitely with
increasing supersaturation, and on the binodal and
in the unsaturated vapor region it is verified by the
agreement between model calculations and experiment,
including numerical one [26, 27]. The approach to
describing the non-ideality of a vapor, proposed by the
model of a mixture of ideal gases of clusters, does not
contradict the method of virial expansion in powers
of vapor density, since it is possible to establish a
unique correspondence between the coefficients of virial
expansion and the equilibrium constants of reactions
of formation of clusters of different sizes. At the same
time, although virial expansion is a more general
approach, taking into account both bound and free
interactions, direct calculation of virial coefficients
in a system containing clusters encounters significant
difficulties.

Let us consider the vapor as an ideal mixture of
clusters of different sizes k, the actual number density
of which we denote by nk, and the equilibrium number
density n̄k. The clusters themselves are considered to
consist of a core similar to a continuous liquid, and a
surface layer similar to a system of virtual chains. A
schematic illustration of such a cluster model is shown

in Fig. 1. The surface energy of a cluster is proportional
not to the surface area, but to the number of particles
in the surface layer k0 of a cluster containing k particles
(we will also refer this number as the cluster size).
Then, as was shown in the works [21,48],

at k ≥ (λ2/2)(λ+ 2δ)

k0 = 3ηλ(k − k0)
2/3 + 3ηλ2(k − k0)

1/3 + ηλ3,

and when k < (λ2/2)(λ+ 2δ)

k0 = k,

(1)

where the dimensionless parameters of the TPM δ and
λ are introduced, so that r�δ and r�λ are the Tolman
length and the thickness of the surface layer of the
cluster, respectively; η = δ/λ+1/2; r� = (3/4πn�)

1/3 is
the characteristic size of the molecular cell in the liquid,
n� is the number density of particles in the cluster core,
which coincides with the number density in the bulk
liquid phase; ηn� is the number density of particles
in the surface layer (Fig. 1). In this case, the work of
formation of a k-particle cluster can be written as [21]

∆Φk = (k0 − 1)T ln(Kn1s)− (k − 1)T ln(S), (2)

where S = n1/n1s is the vapor supersaturation, n1 is
the monomer number density, T is the temperature
in energy units; here and below, the quantities with
subscript s refer to the saturation line. Within the
framework of the cluster vapor model used, S can also
be represented as the ratio of the partial pressures
of the monomers in the nonequilibrium state and on
the saturation line at the same temperature. However,
S differs from the ratio of the vapor pressure to the
saturation pressure the more, the greater the degree of
vapor non-ideality. Since the nucleation rate defining
the nucleation kinetics, which is equal to the number
of supercritical embryos formed in a unit volume per
unit time, is extremely sensitive to S, the vapor non-
ideality significantly affects, first of all, the nucleation
rate.

Introducing the relationship between the dimer
equilibrium constant K(T ) = n2/n

2
1 and the

macroscopic surface tension σ [21]

κ(T ) = exp

[
− 8πσr2�
3(λ+ 2δ)T

]
= Kn1s, (3)

we can transform (2) to the form

∆Φk = 4πσr2�γkk
2/3 − (k − 1)T ln(S), (4)

where
γk =

2(k0 − 1)

3(λ+ 2δ)k2/3
. (5)
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The expression for the minimum work of cluster
formation can be used to obtain the equilibrium
distribution of clusters by size

n̄k = n1 exp

[
−∆Φk

T

]
. (6)

Since it is assumed that only small, close to equilibrium
clusters of size k < 10 contribute to the equation of
state, taking into account (1) we have

n̄k = nk
1K

k−1, (7)

which allows us to calculate the compressibility factor
far from the critical point, i.e. to obtain the equation
of state of the cluster vapor [21]

Z =

∑∞
k=1 nk∑∞
k=1 knk

� 1− κS. (8)

From (8) it is clear that, firstly, always Z < 1, which
is typical for the used model of a cluster vapor, and,
secondly, for any κ > 0 the vapor becomes increasingly
non-ideal with the growth of S. Thus, the non-ideality
of the vapor is greater, the further the system enters
the metastable region.

The distribution of clusters in a supersaturated
vapor whose size is of the order of or greater than the
critical one g is nonequilibrium, and a flow of clusters
capable of unlimited growth equal to the nucleation
rate appears in the size space. Its calculation within
the TPM framework leads to the expression [21]

ITPM = αn2
vsr

2
�vπ

S2Z4
s

Z3/2η2/3

×
[ ∞∑
k=1

k−2/3 exp

(
∆Φk

T

)]−1

� αn2
vsSZ

4
s

n�η2/3Z3/2

(
2σ

πm

)1/2

e−(3γg
TPM

−2)Φ∗ ,

(9)

where α ≈ 1 is the accommodation coefficient,
nv is the vapor density, m is the mass of the
monomer, v =

√
8T/πm is its thermal velocity,

gTPM is the critical size of the embryo in the TPM,
Φ∗ = (16π/3)(σ3/n2

�T
3ln2S) is the work of cluster

formation in CNT.
Neglecting the dependence of the cluster surface

tension on its size is equivalent to substituting γk ≡ 1

into (4). Then, neglecting the non-ideality of the vapor,
the expression (9) reduces to the classical Zeldovich
formula in CNT [8]:

ICNT =

√
2σ

πm

n2
v

n�
eΦ∗ , (10)

and the expression for the critical size of the embryo in
the CNT can be written as

gCNT =
2Φ∗

lnS
. (11)

The critical size gTPM can be expressed in terms of
gCNT :

gTPM =
1

2
(λ+ 2δ)

(
3g2/3c + 3λg1/3c + λ2

)
+ gc,

gc = λ3

(√
1 +

2λ

g
1/3
CNT − λ− 2δ

− 1

)−3

.

(12)

An alternative to the TPM is the self-consistent
classical nucleation theory (SCCNT), in which,
due to the introduction of the correction factor
A = exp(−4πσr2�/T ), the work of monomer formation
turns out to be zero. This is equivalent to substituting
γk = (k2/3 − 1)k−2/3 into (4). In this case, the
nucleation rate ISCCNT is equal to

ISCCNT = AICNT , (13)

and the critical size is still expressed by formula (11).

3. NUMERICAL SIMULATION

3.1. Simulation procedure

For numerical simulation of the nucleation process
during rapid cooling of the Lennard-Jones system,
we use the molecular dynamics method. The MD
simulation was carried out using the LAMMPS [49]
software package. The interaction of two particles at a
distance r is described by the Lennard-Jones potential
with a cutoff and a shift

u(r) =

{
w(r)− w(rc), r ≤ rc,

0, r > rc,

w(r) = 4ε

[(a
r

)12

−
(a
r

)6
]
,

(14)

where ε is the depth of the potential well, a is the
distance at which the interaction energy becomes zero,
rc = 2.5a is the cutoff radius. Further, the quantities
will be given in dimensionless units with the scales
τ0 = a

√
m/24ε in time, where m is the mass of the

particles forming the system; a is the distance; ε is the
energy and temperature. It follows from the definition
of these scales that when substituting dimensionless
quantities into the formulas, the result will also be
dimensionless if we set m = 24. Periodic boundary
conditions are set in three directions of the cubic cell; a

4



	 NUCLEATION IN A NON-IDEAL  RAPIDLY COOLING VAPOR� 73

JETP, Vol. 165, No. 1, 2024

ЖЭТФ Nucleation in a non-ideal rapidly cooling vapor

Langevin thermostat with a time relaxation parameter
of 1000 time steps is used to control the temperature.
In molecular dynamics, a thermostat is an analogue of
a carrier gas that ensures temperature equalization in a
real process. The calculation is performed with a time
step of 0.005.

The number of particles in the system N was
chosen equal to 106. As test calculations showed, in
which N varied from 105 to 106, the dependence of
all the simulation results on N , and in particular the
maximum cluster size in the system, on this number
almost disappears.

The total number of particles in the system N in
this simulation was constant, and the total number
of particles per unit volume nv0 (the total number
density), which did not change in each run, depended
on the size of the simulation cell L = 3

√
N/nv0. In

the calculations performed, this value varied from 319.1

to 351.2. The temperature in the initial state T0 was
specified as T0 = 1.1Ts(nv0), i.e. it corresponded to
the equilibrium gas above the binodal. The system
was maintained in this state for some time until it
reached equilibrium, after which there followed a stage
of cooling the system according to the established linear
law T (t) = T0 − ξ(t + tb), where ξ is the cooling rate,
which varied from 1.4× 10−6 to 10−5, tb is the time to
reach the binodal from the initial state; time is counted
from the moment of crossing the binodal.

This simulation does not take into account the
change in the number of particles per unit volume
nv that occurs during expansion of the vapor cloud
or during nucleation in the flow. However, as shown
in [42], the “condensation explosion” occurs so quickly
that during its characteristic time the vapor density
changes little, and this change, unlike the change
in temperature, does not fundamentally affect the
quantities characterizing the point of the “condensation
explosion”.

To obtain the distribution of clusters by size, the
following definition of a cluster is used: two particles
belong to one cluster if there is a continuous chain of
particles between them, the distance between which
is less than rb = 1.5, while one particle cannot
simultaneously belong to two clusters. According to
the definition, a particle that does not have neighbors
at a distance less than rb is a separate cluster, i.e. a
monomer. Based on this definition, cluster analysis was
performed to obtain the distribution of the numbers
of clusters by their sizes Nk, from which the number
density of clusters nk = Nk/L

3 was calculated.
The vapor density in a nonequilibrium two-phase

system can be defined as the total number density of

particles belonging to subcritical clusters

nv =

g∑
k=1

knk. (15)

In this case, the liquid phase is treated as a dispersed
system of supercritical clusters (droplets). However,
this definition requires knowledge of the critical
cluster size g, which is unknown from molecular
dynamics. In the works [21, 26] it was shown that
the main contribution to compressibility is made by
small clusters with sizes km � 10. Therefore, in (15),
summation up to the critical size g can be replaced
by summation up to some size km. The value of km
changes slightly under different conditions, and it can
be estimated on the saturation line from the relation

km∑
k=1

knk = εgnvs, εg = 0.9, (16)

where km weakly depends on εg � 1. Thus,

nv ≈
km∑
k=1

knk. (17)

Let us introduce the “density” supersaturation
Sρ = nv/nvs and establish its connection with S.
According to [21]

nv =
n1

(1− κS)2
, nvs =

n1s

(1− κ)2
, (18)

from which follows the desired relationship, illustrated
for different values of κ in Fig. 2.

Sρ = S

(
1− κ

1− κS

)2

= S
Z2
s

Z2
= νS, ν =

Z2
s

Z2
,

S =
κ+ β −

√
2κβ + β2

κ2
, β =

(1− κ)2

2Sρ
.

(19)

From Fig. 2 it is evident that in the case where the
non-ideality of the vapor is significant (κ = 0.1), the
growth of S noticeably lags behind the growth of Sρ

due to the deficiency of monomers in the metastable
vapor.

To calculate the density supersaturation Sρ and the
true supersaturation S, the thermophysical properties
of the Lennard-Jones system are required, as well as
the values of the TPM parameters determined for the
interparticle interaction potential (14) with a cutoff
radius of 2.5 used in this work. Such thermophysical
properties are given in the works [21, 50]. They were
interpolated by the following dependencies:

n� = −0.2166T 2 − 0.2534T + 1.0617,

σ = −1.811T + 1.852,

nvs = 40.710 exp (−q/T ) , q = 6.090.

(20)
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Fig. 2. Dependence of S on Sρ for different κ

From the form of the approximation nvs it follows
that q = T 2 (d lnnvs/dT ) is the heat of evaporation
for the Lennard-Jones system. Since the vapor on the
saturation line is slightly non-ideal, we will also assume
in what follows that q � T 2 (d lnn1s/dT ). The TPM
parameters for the potential (14) were borrowed from
[21]: the dimensionless Tolman length δ = −0.07 and
the dimensionless thickness of the cluster surface layer
λ = 2.1.

The value of Sρ was calculated from the MD
simulation data using (17) and the nvs approximation
(20), and the value of S was calculated using the
relations (19), thermodynamic data (20), and the
definition of κ (3). The position of the maximum of
Sρ during cooling of the system depends weakly on
km, which allows one to determine the temperature at
the nucleation point with high accuracy and to obtain
an estimate of the critical size g from the analytical
dependences (12) using (19).

The degree of condensation x is determined by
the total number of particles in supercritical clusters,
divided by the total number of particles in the system

x =

∞∑
k=g

kNk

N
= 1−

g−1∑
k=1

knk

nv0
≈ 1− n−1

v0

km∑
k=1

knk. (21)

Also important for practical application is the number
density of the formed droplets nd, which, according to
molecular dynamics data at the moment of reaching
maximum supersaturation tSmax can be determined as

nd =
∞∑
k=g

nk. (22)

3.2. Simulation results

An isochorically cooled system initially reaches the
saturation line, where supersaturation is by definition

Fig. 3. Evolution of the main parameters of the system
during MD simulation. ξ = 10−6, nv0 = 3/130

equal to unity. The behavior of the main parameters
at later moments in time is shown in Fig. 3. It is seen
that the supersaturation of the vapor continues to grow
and reaches its maximum value Sρm = Sρ (tm). At
this point, the most intense formation of supercritical
nuclei occurs. Then the supersaturation drops sharply,
and the rate of change of the degree of condensation
ẋmax = ẋ (txmax) reaches its maximum, when the
condensation of particles on the already formed nuclei
is the determining process. After this, at t > txst,
the degree of condensation almost reaches a stationary
value (ẋst ≈ ẋ (txst), in Fig. 3, the moment txst is denoted
by the symbol ẋmin). It can be noted that at t > txst
supersaturation starts to grow again. This is due to the
fact that in a system where almost all the substance
is in the liquid phase, the vapor number density is
low. At the same time, the rate of its condensation
on the formed clusters also decreases, i.e. this process
is “frozen”, while the saturation pressure decreases
sharply with a drop in temperature. Note that the
evolution of the true supersaturation S qualitatively
repeats the evolution of Sρ (Fig. 3).

Since the dependence ẋ(t) is well described by the
Gaussian curve, the moment in time txst can be defined
as being 3σx away from txmax, where σx is the standard
deviation for the corresponding Gaussian curve:

txst = txmax + 3σx, σx =

√
2

π

x(txmax)

ẋmax
. (23)

Thus, the results of MD simulation are in qualitative
agreement with the assumptions about the nucleation
process made in [7, 42].

6
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Рис. 4. Distribution of clusters over size nk at times
S = 1, tSmax, txmax and txst (see the legend; the values
of the parameters h1 and ∆h of the moving average (24)

are given in brackets). ξ = 10−5, nv0 = 3/130

Fig. 4 shows the distribution of clusters by size at
different points in time. To construct the distribution,
we used a moving average with variable width h

〈nk〉 =
k+hk∑

i=k−hk

ni

2hk + 1
; hk = hk−1 +∆h. (24)

It is evident from Fig. 4 that in the equilibrium state
S = 1 the cluster size distribution corresponds to
formulas (4)–(6). At t = tSmax, the maximum cluster
size in the system increases sharply due to the growth of
supercritical clusters, reaching an almost macroscopic
value. At t = txmax, the cluster growth continues, and
their spectrum becomes almost flat in a wide range
of k, and at t = txst, a maximum is noticeable in the
region of large clusters. In general, such a picture also
corresponds to the ideas of [7, 42].

4. KINETICS OF EXPLOSIVE NUCLEATION

The purpose of this section is to extend the
analytical approach to the description of the kinetics
of non-stationary nucleation [7, 42] to the case of non-
ideal vapor with the equation of state (8). The growth

rate of a droplet is determined by the difference in the
fluxes of condensing ψ and evaporating particles φ:

1

Σ

dk

dt
= ψ − φ, (25)

where Σ = 4πr2�
[
k0(k)(η

−1 − 1) + k
]2/3 is the

total surface area of the cluster [21]. Since it is
possible to write with sufficiently high accuracy [21]∑∞

k=1 k
1/2nk = n1Z

−3/2 = nvsSZ
2
sZ

−3/2, then

=
∞∑
k=1

knk
vk
4

=
v

4

∞∑
k=1

k1/2nk

=
v

4
nvsSZ

2
sZ

−3/2,

(26)

where vk = vk−1/2 is the thermal velocity of a cluster
containing k particles. We find the expression for the
evaporating flow from the condition of equality of both
flows on the saturation line

φ =

∣∣∣∣
S=1

=
v

4
nvsZ

1/2
s . (27)

It is easy to verify that for supercritical clusters, the
ratio

[
k0(k)

(
η−1 − 1

)
+ k

]2/3/
k2/3 is equal to 0.3 for

k = 300 and 0.1 for k = 1000. This allows us to write
the cluster growth rate in a simplified form

dk

dt
=

Z1/2 − Z2Z
−3/2
s S−1

(πnvvr2� )
−1

×
[
k0(k)

(
η−1 − 1

)
+ k

]2/3 � k2/3
l

τ
,

(28)

where l = Z1/2 − Z2Z
−3/2
s S−1, τ = (πnvvr

2
� )

−1. By
integrating this expression, we obtain the number of
particles in the cluster formed at the time t′ by the
time t [42]:

k1/3(t, t′) = g
1/3
TPM (t′) + (l/3τ)(tt′). (29)

The degree of condensation x = 1 − nv/nv0 is
determined by the integral [7]

x =

t∫

0

k(t, t′)I(t′)dt′, (30)

where

ẋ = I(t)gTPM (t) +

t∫

0

dk(t, t′)

dt
I(t′)dt′. (31)

Further, we will neglect the first terms in the
expressions (29) and (31) similarly to [42], which is
valid for a sufficiently high cluster growth rate

P1 = τg
1/3
TPM/∆tml � 1 (32)

7
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and low rate of change of the supersaturation

P2 = ∆tm/∆tS � 1. (33)

Here, ∆tm and ∆tS are the characteristic duration of
explosive condensation and the time of supersaturation
change, respectively. The use of the steady-state
nucleation rate in (30) and (31) is justified if ∆tm is
much greater than the relaxation time of the small
cluster size spectrum ∆t. This condition can be written
as [21]

P3 =
∆t

∆tm
=

9τν

16∆tm

Tg
2/3
TPM

Z2
sσr

2
�

� 1. (34)

The fulfillment of conditions (32), (33) and (34) will be
considered in Section 5.1.

Expressing supersaturation through the degree of
supercooling S(t) = exp [qθ(t)/T ], similarly to [7, 42]
we expand the nucleation rate in t in the vicinity
of the point tSmax, where the supersaturation reaches
a maximum, neglecting the time dependence of all
quantities except S and θ. Then for the nucleation rate
ITPM (t) (9) in the TPM, we obtain

ITPM (t) = Ime−ω(θm−θ),

ω =
32πσ3

3n2
�q

2Tθ2m

(
3γg

TPM
− 2

)
,

θ(t) = θm − α(t− tSmax)
2, α = −1

2

d2θ

dt2
,

(35)

where Im = ITPM (tSmax) is the maximum value of
the nucleation rate. For the nucleation rates given by
expressions (10) (CNT) and (13) (SCCNT) in (35), it
is sufficient to set ω = 32πσ3/3n2

�q
2Tθ2m. This makes

it possible to integrate expressions (30) and (31) [42]:

x =
l3Im

54τ3α2ω2
, ẋ =

l3Im
36τ2

√
π

α3ω3
, (36)

ẍ =
l3Im
9τ3αω

. (37)

The mass balance equation can be written as

nv = (1− x)nv0. (38)

Rewriting (19) as

(1− κS)
2
Ṡρ = (1− κ)2S (39)

and neglecting the time dependence of κ we
differentiate (39) with respect to time:

Z2Ṡρ − 2κZṠSρ = Z2
s Ṡ. (40)

Hence, we find that at the extremum point S, both
derivatives are equal to zero:

Ṡρ = Ṡ = 0. (41)

Differentiating (40) again with respect to time, we
obtain at t = tSmax

(κS − 1)2S̈ρ + 2κSρ(κS − 1)S̈ = (κ− 1)S̈, (42)

where

S̈ρ =

(
2

1− κS
− 1

)
νS̈. (43)

Dividing the mass balance equation by nvs, we
obtain the expression

x = 1− Sρ

S̃ρ

, S̃ =
nv0

nvs
, (44)

differentiation of which with respect to time taking
into account the condition Ṡ = 0 and the dependence
nvs = n0e

−q/T (20) allows one to write

ẋ � −Sρ

S̃

qṪ

T 2
= (x− 1)

qṪ

T 2
. (45)

Differentiating (44) twice with due regard for (33) we
find that for t = tSmax,

ẍ � − S̈ρ

S̃
. (46)

Neglecting the rate of change of temperature compared
to the rate of change of Sρ from the definition of the
degree of supercooling θ, we obtain after differentiation

θ̇ � T

q

Ṡ

S
, Ṡ =

q

T
Sθ̇. (47)

By repeatedly differentiating this expression at the
point where Ṡ = 0 we obtain taking into account (35)

S̈ =
q

T
Sθ̈ = −2αS

q

T
. (48)

Hence, taking into account (38) and the relationship
between S̈ρ and S̈ (43) we find at the point t = tSmax

S̈ρ = −2α
q

T

(
2

1− κS
− 1

)
Sρ. (49)

We substitute this expression into (46) taking into
account (44):

ẍ = 2α
q

T
(1− x)

(
2

1− κS
− 1

)
. (50)
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Taking into account (37) we finally write

α =

√
1

18

l3

τ3
ImT

ωq(1− x)

(
2

1− κS
− 1

)−1

. (51)

From (35), it follows that the time of action of the
source is

∆tm =
1√
αω

, (52)

and the supersaturation change time is
∆tS =

√
T/2αq. The number density of formed

droplets at the moment t = tSmax is found using (35)
[42]

nd =

∞∫

−∞

I dt ≈ √
πIm∆tm, Im = I(θm). (53)

Since we consider the droplets formed in the process
of “condensation explosion” and the nucleation rate I is
almost zero before and after this stage, the integration
limits in (53) can be extended to infinity. Taking into
account the assumed symmetry of I(t) with respect to
time tSmax (see (35)) we can conclude that the droplet
number density at the moment tSmax is nd/2.

The set of equations that determines the quantities
characterizing the “condensation explosion” is obtained
by substituting (45) into (36):

x(t) =
l3Im(x, t)

54τ3α2ω2
,

l3Im(x, t)

36τ2

√
π

α3ω3
= [x(t)− 1]

qṪ

T 2
.

(54)

This system is transcendental and can be solved by the
convergence method with respect to the unknowns x

and t.

5. RESULTS OF THE NUCLEATION KINETICS
CALCULATIONS

5.1. Nucleation in the Lennard-Jones system

To solve the system of equations (54), interpolation
dependences (20) were used, the TPM parameters
δ and λ were borrowed from [21]. For subsequent
comparison of the analytical results with the results
of numerical simulation, the condition nv0 = const and
the linear law of temperature change T = 1.3− ξt were
used. The system of equations (54) was solved using
expressions for the nucleation rate in the TPM, CNT,
and SCCNT models (formulas (9), (10), and (13); the
quantities corresponding to these models are denoted
in what follows by the subscripts TPM, CNT, and

SCCNT). In this case, in the calculations using the
CNT and SCCNT models, the non-ideality of the vapor
was not taken into account, and thus, in all formulas in
Section 4 it was assumed that κ = 0, Z = 1, Sρ = S.

The calculation results for the TPM and CNT
models are shown in Figs. 5–8. It is evident that the
TPM predicts lower supersaturations at the point
of maximum supersaturation at a high cooling rate
compared to the CNT (Fig. 5). A characteristic feature
of the CNT is the absence of a solution at ξ � 10−5,
which indicates the boundary of the lability region.
The same is evidenced by the peculiarity of TCNT in
Figs. 6 and 10, as well as the peculiarity of Sρ in Fig. 11.
At a fixed cooling rate, the peculiarities of S, g, and
T for the CNT manifest themselves at low densities,
while they are absent for the TPM (Figs. 7 and 8).
According to the TPM, the “condensation explosion”
is in the metastable region and is characterized by
the absence of singularities, which corresponds to the
MD simulation data (Sec. 5.2). For the CNT, on the
contrary, there is a singularity of the critical size (g → 0

at S → ∞), which can be seen in Fig. 5, and the values
g < 10 are reached, at which the cluster clearly cannot
be considered a macroscopic drop. The critical size in
the TPM is much larger than in the CNT. In Fig. 6, it
is also clearly visible that with an increase in ξ, Z falls,
and the vapor differs significantly from the ideal one.

Figures 7 and 8 illustrate the results of calculations
in the parameter region inaccessible to numerical
simulation (low cooling rate and total particle number
density). It is interesting to note that the vapor
becomes significantly non-ideal (small Z) not only at
high total particle number density nv0, but also at low
number density (Fig. 8), which is a consequence of the
sharp increase in supersaturation.

The fulfillment of the criteria of the approximations
(32)–(34) used in deriving the system of equations (54)
is analyzed in Fig. 9. To calculate the values of the
criteria as functions of ξ, all variables were taken at the
point of maximum supersaturation t = tSmax, i.e. the
solution of the system (54) was used; ∆tm was found
using the formula (52).

It is evident that all criteria are violated at
sufficiently large ξ, and the criterion (34) is violated
first of all, i.e. non-stationarity of the rate of formation
of supercritical nuclei is manifested. In addition, the
applicability of the considered analytical model is
limited by too small values of Z < 0.5, as can be seen
from Figs. 6 and 8. Criteria (32) and (33) are fulfilled
quite well in the entire considered range of parameter
values.

9
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5.2. Comparison of MD simulation and
analytical calculations results

The parameters of the “condensation explosion”
obtained from the MD simulation data at t = tSmax are
compared with the results of analytical calculations
for different total vapor number densities in Fig. 10–
12. As can be seen from Fig. 10, the TPM model
qualitatively and quantitatively corresponds to the
numerical simulation, the CNT does not correspond
even qualitatively, and the SCCNT qualitatively
correctly reproduces the trends of the dependencies,
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Fig. 7. Dependence of the critical size and the 
supersaturation on the total number density of particles

at ξ = 10−10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10−5 10−4 10−3 10−2
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

T Z

nv0

TTPM
TCNT

Z

Fig. 8. Dependence of Z and T on the total number
density of particles at ξ = 10−10

but gives significantly overestimated temperature
values. For the value of Sρ, the correspondence of
the TPM model turns out to be quantitatively worse,
but it is clear that this model still best describes the
results of the MD simulation (Fig. 11). In this case, the
SCCNT results in greatly underestimated values of Sρ.
The discrepancy between the TPM and the numerical
simulation results may be due to factors such as
insufficient accuracy of the vapor density estimate,
the proximity of the parameters of the simulated
system to the spinodal decomposition region, and
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going beyond the applicability of the theory at too
small Z. The cluster number density at the point of
maximum supersaturation nd/2 (Fig. 12), calculated
using the TPM (formula (53)), also demonstrates
satisfactory agreement with the numerical results,
while the SCCNT yields significantly overestimated
values. The accuracy of the CNT here is comparable
to the TPM, but the latter describes the trend of
the simulation results better. Note the rather weak
dependence of nd/2 on the total vapor number density,
which is manifested both in the MD simulation results
and in the analytical calculation.

The significant discrepancy between the TPM and
MD at a single point at ξ = 10−6 (Fig. 12a) may be
explained by inaccuracy of the MD simulation, since
at low cooling rates, the number density of critical-
size clusters is also small, so that for such values of ξ
the statistics for estimating nd/2 could be insufficient,
which as is known leads to an overestimation of the
numerical estimate. It is possible that to refine this
value it is necessary to increase the number of particles
in the computational cell.

When performing calculations using CNT and
SCCNT, the non-ideality of vapor was not taken
into account, so it is of interest to estimate the
compressibility factor that results from using these
models. For this, we use the relation

Z �
10∑
k=1

n̄k

(
10∑
k=1

kn̄k

)−1

, (55)

where n̄k is taken in accordance with the CNT and
SCCNT models (see section 2). Then for nv0 = 3/130

and ξ = 10−5, which corresponds to the parameter
values in Fig. 10–12, we obtain Z � 0.16 for CNT
and SCCNT (the close values of Z are explained by
the fact that at the point of maximum supersaturation
for SCCNT the temperature is higher than for CNT,
but the lower supersaturation compensates for the
difference in values). From this, we can conclude that
both models without taking into account the non-
ideality of the vapor are internally inconsistent. In CNT
and SCCNT, not taking into account the non-ideality
partially compensates for the inaccurate accounting
of the size dependence of the cluster surface tension,
which can bring the results of the TPM and these
models closer together.

Thus, it can be concluded that the TPM as a whole
best describes the results of MD simulation.

5.3. Nucleation in silicon dioxide vapor

It is possible to verify that taking into account the
equation of state of condensing vapor is essential not
only for the Lennard-Jones system by treatment of
nucleation in SiO2 vapor. The choice of this substance
is connected firstly with the fact that analytical
calculations for it using CNT have already been made
in [42] and secondly with the already mentioned
problem of the formation and evolution of regolith.

Neglecting the effect of vapor pressure changes
on the nucleation kinetics, for calculations we can
approximately set nv0 = χp/T , where χ is the
fraction of SiO2 molecules in the gas flow, and
the pressure p and temperature T of this flow are
taken at the point of maximum supersaturation. The
thermophysical quantities characterizing silicon oxide
and its vapor, as well as the parameters of the gas flow,
are borrowed from [42], and for calculations according
to the TPM model, the same values were taken as for
the Lennard-Jones system: δ = −0.07 and λ = 2.1.

The calculation results shown in Fig. 13 are
qualitatively similar to those for the Lennard-Jones
system; however, unlike the latter, with increasing
cooling rate a sharp drop in Z precedes entering the
lability region. Therefore, on the side of large values,
the range of ξ is limited by Z ∼ 0.1, at which the
calculated value of the critical size according to the
CNT becomes negative. Similar to the Lennard-Jones
system, the calculation according to the CNT leads
to much higher values of S and, accordingly, low g.
Note that for the CNT at ξ = 1.4 · 103 K/s, which is
the cooling rate in [42], the values of the parameters
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Fig. 10. Comparison of temperature at t = tSmax as a 
function of ξ calculated using the analytical models CNT, 
SCCNT and TPM (curves) and obtained from MD 
simulation data (points) (see legend). a) nv0 = 3/130,

b) nv0 = 3.5/130, c) nv0 = 4/130
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Fig. 11. Same as in Fig. 10, for the value Sρ
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Fig. 12. Same as in Fig. 10, for the value nd/2
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Fig. 13. Dependence of the supersaturation and the 
compressibility factor on the cooling rate ξ, calculated 
for the CNT and TPM models for the conditions [42]

at the point of maximum supersaturation obtained in
this work are reproduced.

Note also the lack of similarity between the results
obtained for SiO2 and the Lennard-Jones system even
when using dimensionless quantities. For example, if we
take q/5 and n

−1/3
� as the units of energy and length for

SiO2, respectively, then we obtain that the sharp drop
in Z in Fig. 13 corresponds to a dimensionless cooling
rate of the order of 104. This is more than eight orders
of magnitude greater than the corresponding value for
the Lennard-Jones system (Fig. 6).

6. CONCLUSION

In this paper, the problem of non-stationary
nucleation during the vapor-liquid phase transition
is considered. An analytical approach to describing
the kinetics of this process is developed, taking into
account the non-ideality of the condensing vapor. The
previously obtained equation of state of the vapor
is used, which assumes that its non-ideality is due
to the presence of the lightest clusters containing
less than 10 monomers. The number density of such
clusters is high not only at high total vapor number
densities, but also at low vapor densities but high
supersaturations. In such states, the vapor is strongly
non-ideal, which significantly affects the rate of
formation of supercritical clusters. A self-consistent
analytical solution to the problem of nucleation
kinetics of rapidly cooled vapor is found, based on
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three models of small clusters, CNT, SCCNT, and
TPM. The latter correctly takes into account the
dependence of the work of cluster formation on its size.
The results of calculations using these models lead to
qualitatively different results, namely, they indicate
the existence of such a region of system parameters
where the TPM predicts a metastable state at the
point of maximum supersaturation of the vapor, while
the CNT indicates a state of its lability.

For numerical simulation of the process under
consideration, the molecular dynamics method for
the Lennard-Jones system was used. A method for
numerical determination of the main parameters
characterizing the “condensation explosion”,
supersaturation and degree of condensation, as
well as the time of the onset of nucleation was
proposed. The spectrum of sizes of clusters present
in the vapor was determined. It was shown that the
evolution of all quantities, in particular, the bell-
shaped dependence of the degree of supersaturation
on time, fully corresponds to that assumed in the
analytical model.

Comparison of the MD simulation results and
analytical calculations shows that the calculation using
the TPM best corresponds to the simulation results;
there is satisfactory quantitative correspondence at the
point of maximum supersaturation of its value, the
temperature of the system and the number density
of supercritical clusters. Thus, simulation of non-
stationary nucleation as a whole was carried out, during
which the rate of formation of supercritical clusters can
be considered quasi-stationary. Satisfactory agreement
between the MD simulation results and analytical
calculations allows us to claim the model to be correct
and accuracy of the results obtained on its basis, to
be sufficient, and also to assume that the model yields
reasonable results outside the range of parameters
available for MD simulation.

Analytical calculations performed for the nucleation
of silicon dioxide also demonstrate a significant
difference in the results using the TPM and the CNT.
At the point of maximum supersaturation, the vapor
turns out to be even more non-ideal than in the
Lennard-Jones system. This indicates that potentially
the non-ideality of the vapor in the “condensation
explosion” is its universal property, independent of
either the substance or the cooling conditions of the
system.

Thus, when considering the kinetics of non-
stationary nucleation, it is necessary to take into
account not only the dependence of the work of
formation of a critical cluster on its size, but also the

non-ideality of the condensing vapor. This non-ideality 
can be taken into account using the equation of state 
proposed in the work, which should be applicable to 
any substance in the metastable region.
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