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1. INTRODUCTION
In  modern microelectronics and spintronics devices, 

magnetic materials with a compensated magnetic moment 
are actively used, i.e. magnets with antiferromagnetic order-
ing [1]. This choice is due to the fact that an exchange gain 
effect is  observed in  antiferromagnets, which significant-
ly increases the frequency of antiferromagnetic resonance 
to the terahertz range, and also significantly enhances oth-
er dynamic characteristics of the system, such as the limit-
ing velocities of domain walls [2] and magnetic vortices [3, 
4]. Also, the spin current significantly affects the properties 
of compensated magnets [5-12], and it is this circumstance 
that makes them so attractive for use in spintronics. At the 
same time, one of the “hottest” topics of the physics of mag-
netism is the search for new phase states of magnetically or-
dered systems. 

The standard magnetic ordering is characterized by a vec-
tor parameter of the order (average value of the 〈 〉nS  spin 
at the node) [13-15], non- invariant with respect to time re-
versal. However, besides the standard magnetic order (fer-
ro- or  antiferromagnetic), there are systems such as  rare 
earth dielectrics [16], iron-based superconductors [17-21] 
and a number of others, in which magnetic ordering is more 
complex than the standard one. This ordering includes 
nematic [14, 15, 22-33]. This state is  similar to  ordering 

in  liquid crystals [34], whence in fact the name “spinous 
nematicus” was derived. Spin nematic states are found in  
LiCuVO4 magnets [33, 35, 36], rare-earth magnets [37] and 
low-dimensional systems (see, for example, [30]).

In a magnet with S = 1, taking into account a large bi-
quadratic exchange interaction of the form ′

2( )n nK S S  leads 
to the realization of a spin nematic state [38]. The spin ne-
matic is characterized by a spontaneous violation of  rota-
tional symmetry, which is associated with spin quadrupole 
parameters see [26-32]. Note that the quadrupole averages 
characterizing the

( )α β β α
αβ αβ+ − δ +1= 1 ,

3
Q S S S S S S

α β, = , , ,x y z

nematic state are invariant relative to  time reversal. The 
geometric image of  these averages is  a  quadrupole el-
lipsoid with axes 1e , 2e  and 3e , chosen in  such a way that 

α β β α〈 + 〉 = 0S S S S  at α ≠ β, α β, = 1,2,3, and the semi-axes 
of the latter are equal to 〈 〉 〈 〉2 2

1 2,S S  and 〈 〉2
3S . At zero temper-

ature T = 0, the quadrangular ellipsoid degenerates into a flat 
disk, 〈 〉 〈 〉 〈 〉2 2 2

1 2 3= = 1, = 0S S S . At a temperature different 
from zero, but lower than the critical temperature < cT T ,  
the value is  2 2

3 1,20 < <S S〈 〉 〈 〉 , when cT T>  the rotational 
symmetry is restored αβQ  [22, 39–42].
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Due to the isotropy of the exchange interaction, the di-
rection of the quantization axis z is arbitrary, the state of the 
spin nematic can be described by introducing a vector-direc-
tor n, which is directed along the axis of rotation of a quad-
rupole ellipsoid. It is understood that the states with n and -n  
are indistinguishable, and the value αβQ  is a quantum an-
alogue of the De Gennes order parameter, which is  intro-
duced for ordinary nematic liquid crystals [34].

In the case when the exchange integral J < 0 is negative, 
states with two magnetic sublattices arise for a crystalline 
magnet. If  the Heisenberg exchange exceeds the bi-quad-
ratic one, then the usual antiferromagnetic state is realized 
in the magnet. In the opposite case, the situation is more 
interesting and the question of  the basic state is not trivi-
al, since the states with n and -n are identical. Within the 
framework of the mean field approximation, it can be shown 
that the system implements the state of an orthogonal ne-
matic, for which the directions n are orthogonal in two sub- 
lattices [25, 26, 43]. Since there are three such directions 
of vector n, in the one-dimensional case this state is defined 
as not fully ordered (semiordered) [25], although the sta-
bility of the two-lattice phase within the framework of the 
mean field approximation is proved for a square lattice [26], 
and a three-lattice one for the triangular lattice [27, 28], see 
Fig. 1, 2 in [28]. The orthogonal nematic-ferromagnetic and 
orthogonal nematic-antiferromagnetic phase transitions oc-
curring with a change in the J/K parameter are degenerate 
transitions of the first kind [26].

Most studies of spin nematics were limited to the case 
of low temperatures when considering the isotropic model 
[26-32], or a model taking into account the one-ionic aniso-
tropy [43-45]. As it was shown in [43], the influence of a sin-
gle-ionic anisotropy of  the type “light axis” leads to  sig-
nificant changes in the dynamics of the spin nematic even 
at T = 0, although it does not change the phase pattern com-
pared with the isotropic case. The influence of temperature, 
i.e. thermal fluctuations, on the properties of spin nematic 
has not been sufficiently studied [40, 46-49]. In [47, 48], the 
influence of the temperature on the behavior of both the or-
der parameters and the excitation spectra of a magnet with 
large single-ion anisotropy, comparable or even exceeding 
the constant of the bilinear exchange interaction. However, 
these models do not describe the state of the spin nematic. 
In this regard, it is of interest to study the effect of both sin-
gle-ionic anisotropy of the type “light axis” and temperature 
on the behavior of order parameters and excitation spectra 
at different ratios of the material parameters of the system. 

2. MODEL AND BASIC CONDITIONS
As a model, let us consider a non-Heisenberg antiferro-

magnet, in which, in addition to the bilinear exchange inter-
action, the bi-quadratic exchange interaction is taken into 
account, as well as one-ionic anisotropy of the type “light 
axis”. The spin of the magnetic ion is S = 1. The Hamiltoni-
an of such a model can be represented as
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where nS  is the spin operator at the n-th node, J, K are the 
constants of bilinear and biquadratic exchange interactions, 
respectively, D > 0 is a constant of one- ionic anisotropy 
of the type “light axis”. We will limit ourselves to considering 
lattices that allow splitting into two equivalent sublattices, for 
example, cubic or square. Previously, similar models were 
considered only when T = 0. It was shown in [26, 43] that 
in a non-Heisenberg magnet with S = 1 at T = 0 , it is pos-
sible to realize four phase states: the ferromagnetic phase 
with a predominant bilinear exchange interaction (J > K), at  
J < 0 and | J | > K an antiferromagnetic state is realized, but if  
J > 0,K > 0 and J < K, the nematic phase is stable in the 
system, and finally, if J < 0, K < 0 and | J  |<| K |, then the 
orthogonal-nematic phase is realized.

Let us  consider the behavior of  the system described 
by  the Hamiltonian (1) at a  temperature other than zero, 
but not exceeding the critical temperature. Using a diagram-
matic technique for Hubbard operators [26, 44, 45, 50-52], 
let’s determine the energy levels of the magnetic ion 

	 − − θ − θ 

0 2
1, 1 2 2

0
0 2

= cos2 sin 2 ,
2

= 2 ,

D
E H B B

E B
	 (2)

where
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ε is an additive constant independent of spin operators, 
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( ) ( ) ( )− −
2 2 20 2

2 2= 3 2, =z x yq S q S S

are components of the quadrupole moment tensor.
Using the connection of spin operators with Hubbard op-

erators [26, 46, 53, 54]

( ) ( )− − − −θ − − θ +11 1 1 1 1 11= cos2 sin 2 ,z
n n n n nS X X X X

( ) ( )+ − − θ − + θ +  
01 10 10 0 1= 2 sin cos ,n n n n nS X X X X

( )+− += ,n nS S

it is possible to determine the dependence of vector and ten-
sor order parameters on both temperature and material pa-
rameters of the system, i.e. on the magnitude of exchange 
integrals and the anisotropy constant:

	 ( ) ( )−− − −
θ 1 1exp / exp /

= cos2 ,z E T E T
S

Z
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В  (3)–(5) Z  is  the statistical sum, which in  this case 
is equal to

−

−
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ME  stands for the energy levels of the magnetic ion, de-
termined by expressions (2). Also in formulas (3)-(5) and the 
expression for the statistical sum, the Boltzmann constant 
is equal to one, and the temperature is measured in units 
of energy. θ is the parameter of the Bogolyubov u-v transfor-
mation [47], determined by the ratio

θ θ2
2sin 2 = cos2 .H B

Note that the parameter θ clearly does not depend on the 
constant of single-ionic anisotropy, but depends both on the 
constants of exchange interactions and parameters of the or-
der zS  and 2

2q .

3. ORDER PARAMETERS OF THE NON-
HEISENBERG ANTIFERROMAGNET

3.1   Ferromagnetic phase
As shown in [26, 43], in the case of low temperatures and 

predominant bilinear exchange interaction (J > K), the pa-
rameter θ is zero (θ = 0). Taking this into account, as well 
as the fact that the lowest energy level of the magnetic ion 
at T → 0 is E1, it follows from the ratios (3)–(5)

0 2
2 2= 1, = 1, = 0.zS q q

These values of the order parameters indicate that at J > K 
and θ = 0, the ferromagnetic phase (FM) is formed in the 
system. Numerical analysis of the system of equations (3)–
(5) allows us to determine the effect of thermal fluctuations 
on the behavior of the system parameters in the FM phase. 
Figures 1 a, b, c show these results for the FM phase at dif-
ferent values of the single-ionic anisotropy constant.

All variables in Figure 1 are given in relative units (D/J, 
T/J). As can be seen in Fig. 1 a, b, c, the average value of the 
magnetic moment (per node) decreases with increasing tem-
perature, this is due to the increase in thermal fluctuations. 
Turning the average magnetic moment to zero makes it pos-
sible to determine the Curie temperature (see Fig. 1 a, b, c), 
which increases with the growth of the one-ion anisotropy 
constant. This is easy to understand if we remember that 
the magnetic moment in the ferromagnetic phase is orient-
ed along the axis of light magnetization, and the greater the 
anisotropy constant, the more energy is necessary for the 
destruction of the vector magnetic order and therefore the 
higher is the critical temperature.

The analysis of equations (3)–(5) allows us to estimate 
the Curie temperature in the FM phase:

  +
−   

0
0 2

0
2

= .
2 3C

K q
T J

If we neglect the biquadratic exchange interaction, then 
this expression is  for the Curie temperature corresponds 
to the standard result obtained in the mean field approxima-
tion [55]. In addition, it should be noted that the Curie tem-
perature estimate we have obtained implicitly depends on the 
magnitude of the one-ionic anisotropy constant. As follows 
from (3)–(5), as well as Fig. 1 a, b, c, at temperatures close 
to  CT , the parameter 0

2q  the more strongly differs from zero, 
the greater the value of the single-ion anisotropy constant, 
since a large D value stabilizes the axis of the quadrupole 
ellipsoid. 
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As  for the behavior of  tensor order parameters in  the 
FM phase, it is quite expected: parameter 2

2 = 0q  in the en-
tire temperature range, since in this phase

( ) ( )2 2
= ,x yS S

and the parameter is  0
2q  is different from zero in the entire 

temperature range, since it is proportional to  ( )2zS  and 
does not depend on the orientation of the magnetic moment. 
At  > CT T , in  the isotropic case, the rotational symmetry 
of the tensor is

α β β α
αβ +1=

2
Q S S S S

restored, i.e.

( ) ( ) ( )2 2 2 2= = = .
3

x y zS S S

However, as  can be  seen in  Fig. 1  a, b, c, the pres-
ence of single-ion anisotropy of the “light axis” type leads 
to the fact that the component of the quadrupole tensor 0

2q  

significantly depends on the value of the anisotropy constant, 
which violates the rotational symmetry of the αβQ  tensor at 

> CT T . 

3.2   The nematic phase
Let us now consider the situation when the biquadratic 

exchange interaction is predominant, i.e. when the parame-
ter θ in this case is equal to π / 4 [26, 43]. In addition, in this 
case, at  → 0T , the state of spin nematic (SN) is realized 
in the magnet, which is characterized by the following pa-
rameters of the order:

0 2
2 2= 0, = 1, = 1.zS q q

The geometric image of this state when at low tempera-
tures is a uniaxial ellipsoid with semi-axes

( ) ( )2 2
= 1, = 1,z xS S

( )2
= 0,yS

Fig. 1. Dependences of the order parameters of a non-Heisenberg anisotropic ferromagnet with S = 1 on temperature 
in various phases. a-c FM phase, exchange integrals J = 1, K = 0.5, d-f AFM phase, exchange integrals J = -1, K = 0.5,  
D/J = 0.1 (a, d), D/J = 0.5 (b, e), D/J = 1.0 (c, f ). j-i SN-phase, exchange integrals J = 0.2, K = 1.0, g-l show ON-phase, 
exchange integrals J = -0.3, K = -1.9, D/K = 0.1 (j, g), D/K = 0.5 (h, k), D/K = 1.0 (i, l). Solid lines: zS , dashed lines 
q2

2, dashed dotted lines 0
2q .
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i.e. an infinitely thin disk lying in the zx plane. The vector 
director is perpendicular to the plane of the disk, i.e. directed 
along the y axis.

The behavior of the parameters of the order of a non-Hei-
senberg ferromagnetic with S = 1 as functions of temperature 
and anisotropy constant is shown in Fig. 1  j, h, i. As can 
be seen in Fig. 1  j, h, i, with increasing temperature, the 
quadrupole parameter 2

2q  becomes less than one. This means  

that ( ) ≠
2

0yS  and, therefore, the quadrupole ellipsoid be-

comes biaxial, and its orientation is determined by the axis 
of anisotropy. 

As the numerical analysis of the equations (3)–(5) shows, 
given in Fig. 1 j, h, i, the average value of the magnetic mo-
ment (per node) in the SN phase is zero over the entire tem-
perature range and at any values of the anisotropy constant. 
AS far as the tensor parameters of the order are concerned, 
the component of the quadrupole moment tensor 

( ) ( )−
2 22

2 = x yq S S

is zero at  temperature QT , which determines the tempera-
ture of the phase transition from the SN phase to the par-
amagnetic one. It  should be  noted that this temperature 
increases with the growth of the one-ionic anisotropy con-
stant (although this growth is not as significant as during the 
FM-phase–paramagnetic phase transition). Temperature 
dependence of the parameter of the order 0

2q  shows that at 
> QT T , the rotational symmetry of the αβQ  tensor is violated, 

which is associated with the presence of anisotropy of the 
“light axis” type. In addition, using the ratio (3)-(5), in the 
approximation of the mean field, we estimated the transition 
temperature ( )QT from the spin nematic state to the paramag-
netic phase:

+ 0
0 22

= .
2 3Q

K q
T

As you can see, this temperature, as expected, is deter-
mined only by the biquadratic exchange interaction and ten-
sor parameters of the order.

3.3   Antiferromagnetic phase
Let us now consider a situation in which the constants 

of exchange interactions are related by the ratio |J| > K, where 
J < 0, K > 0. In this case, it is energetically advantageous 

for the system to split into two equivalent sublattices, i.e., 
to switch to the antiferromagnetic state (AFM). As shown 
in [26, 43], at  → 0T , the u-v transformation parameter takes 
the values θ1 = 0 and θ π2 = / 2 for the first and second sub-
lattices, respectively. The order parameters of the first and 
second sublattices at T = 0 have the form [43]

0 0 2 2
1 2 2(1) 2(2) 2(1) 2(2)= = 1, = = 1, = = 0.z zS S q q q q

It  is  taken into account here that the magnetizations 
of the first and second sublattices are antiparallel. It is of in-
terest to  investigate the behavior of the parameters of the 
sequence at arbitrary temperatures in the AFM phase using 
the ratios (3)–(5). At  the same time, it  is enough to con-
sider one sublattice, since they are equivalent. A numerical 
analysis of the dependence of the parameters of the order 
of a non-Heisenberg easy-plane magnet on temperature and 
the value of the anisotropy constant in the AFM phase is giv-
en in Fig. 1 d, e, f.

It follows from Fig. 1 d, e, f that the behavior of the av-
erage value of the magnetic moment (per node) is analogous 
to its behavior in the FM phase, i.e., with an increase in tem-
perature, it decreases, which is associated with the influence 
of thermal fluctuations. Just as in the FM phase, turning the 
average magnetic moment to zero makes it possible to deter-
mine the Neel temperature. However, as can be seen in Fig. 
1 j, h, i and Fig. 1 d, e, f, the Neel temperature is significantly 
higher than the Curie temperature and increases with an in-
crease in the one-ion anisotropy constant. The dependence 
of the Neel temperature on the anisotropy constant is easy 
to understand if we recall that the magnetic moment of the 
sublattice in the AFM phase is parallel to the axis of light 
magnetization, and the greater the anisotropy constant, the 
more energy is needed to destroy the vector magnetic order, 
and consequently, the higher the critical temperature. More 
interesting is the question of the growth of the Neel temper-
ature in comparison with the Curie temperature at the same 
values of the anisotropy constant. So, if we do not take into 
account the biquadratic exchange interaction (Heisenberg 
magnet), then the Curie and Neel temperatures do not co-
incide, and correspond to the standard result obtained in the 
mean field approximation [47]. When biquadratic exchange 
interaction is  enabled, the situation changes. So, when 
J > K > 0 the bilinear exchange interaction tends to establish 
a  ferromagnetic ordering, and the biquadratic one is qua-
si-antiferromagnetic. Such competition leads to a decrease 
in the Curie temperature (see the expression for TC in the 
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FM phase). In the AFM phase (at J < 0,K > 0, |J| > K) both 
bilinear exchange interaction and biquadratic interaction 
tend to establish antiferromagnetic ordering. This circum-
stance leads to an increase in the Neel temperature compared 
to the Curie temperature. In addition, the analysis of equa-
tions (3)-(5) makes it possible to estimate the Neel tempera-
ture in the AFM phase:

  +
+   

0
0 2

0
2

= .
2 3N

K q
T J

As for the temperature dependence of the tensor order 
parameters in the AFM phase, it is analogous to their behav-
ior in the FM phase.

3.4   Orthogonal-nematic phase
If the exchange interaction constants are related by the 

ratio J < 0,K < 0, |J| < |K|, then splitting into two sublat-
tices is advantageous for the magnet. However, the ordering 
in this case is not antiferromagnetic but orthogonal-nematic 
(ON) [26, 56]. This state can be considered as a nematic state 
in each of the sublattices, but the state vectors of the sublat-
tices are orthogonal (for more details, see [26]). At T = 0, the 
parameters of the ON-phase sequence are equal to 

0 0
1 2 2(1) 2(2)= = 0, = = 1,z zS S q q

−2 2
2(1) 2(2)= = 1.q q

In the case of temperatures other than zero, the behavior 
of the order parameters is determined by the correlations (3)-
(5). Numerical analysis of these correlations allows us to de-
termine the dependence of  the order parameters on both 
temperature and the value of the single-ion anisotropy con-
stant. The results of such an analysis are shown in Fig. 1 g, 
k, l. At the same time, it is taken into account that the sub-
lattices are equivalent and it is sufficient to consider the be-
havior of one of the sublattices.

As follows from our analysis of relations (3)-(5), the or-
thogonal-nematic state is preserved throughout the temper-
ature range (excluding the fluctuation region), i.e.

= 0, = 1,2,z
iS i

and the behavior of  tensor parameters of  the order 0 2
2 2,q q  

is similar to their behavior in the SN phase. It should be not-
ed that the conversion to zero of the parameter 2

2q  allows es-
timating the transition temperature of the magnet from the 
orthogonal-nematic phase to the paramagnetic one. As can 

be seen from the comparison of Fig. 1 d, e, f and Fig. 1 g, k, 
l, this temperature 1( )QT  is significantly less than the tempera-
ture of the SN-phase– paramagnetic phase transition. When 
describing both AFM and ON phases we used extended zone 
schemes. In this case, it turns out that this representation 
is quite convenient and visual, since the sub- lattices are 
equivalent. In this scheme, it is necessary to change the con-
stant of the biquadratic exchange action in the energy levels 
of the magnetic ion (2)

= .
2 2

KK
K → −

Then an analytical estimate of  the temperature in  the 
transition ON-phase–the paramagnetic phase has the form

+ 0
0 2

1
2

= .
4 3Q

K q
T

Thus, both numerical analysis and analytical estimation 
have shown that temperature 1QT  is  significantly less than 
temperature QT .

4. DYNAMICS OF THE SPIN NEMATIC 
AT ARBITRARY TEMPERATURES

We investigate the behavior of the spectra of elementary 
excitations of the system under consideration at temperatures 
other than zero. The excitation spectra are determined by the 
poles of the Green’s function [44, 45, 47, 49, 51, 52], which, 
within the framework of the Hubbard’s operators technique 
is defined as follows [32, 46, 49, 51, 52]:

( ) ( ) ( )′ ′λλ λ λ
′′ ′ ′τ τ − τ τ ˆ, , , = ,n nG n n TX X

where 

( ) ( ) ( )λ λτ τ − τ = exp expn nX H X H

is the Hubbard operator in the Heisenberg representation, T̂  
is the Wick operator, λ are root vectors defined by the algebra 
of Hubbard operators [44, 47]. The derivation of the disper-
sion equation is described in detail in the works [39, 44, 46, 
51, 52], therefore, here we give only the form of this equation

	 det = 0, , = 1,2,...,8,ij ijx i jδ + 	 (6)

( ) ( ) ( )α ω α α0= ,ij n ijx G b c

where 
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( ) −α  ω ω + α 
1

0 =n nG i E

is Green’s zero function,

( ) ( )α β α β, = , ,ij ik kjc a A

( ) ( ) ( )α β α −β, = .ik i ka c c

The components of the vector ( )λc  are determined from 
the connection of spin operators with Hubbard operators, 
and the matrix ′

ˆ
nnA  can be represented as

1 2 1 2 1 2

3 5ˆ ˆ ˆ= ,n n n n n nA A A⊕

( ) =b α αX  are terminal factors, with the decisive one that 
can be explicitly represented as [51, 55] 

( ) ( ) ( ) ( )− − + −
α − α 1 0

1 2
exp / exp /

= = ,
E T E T

b b
Z

	 ( ) ( ) ( ) ( )1 1
3 4

exp / exp /
= = ,

E T E T
b b

Z
−− − −

α − α 	 (7)

( ) ( ) ( ) ( )−− − −
α − α 0 1

5 6
exp / exp /

= = .
E T E T

b b
Z

where iE  are the energy levels of the magnetic ion (i = 1, 0,-1), 
determined by the relations (2), and αi root vectors (i = 1, ..., 6),  
the components of  which are determined by  the algebra 
of Hubbard operators [39], and in this case are equal to:

( ) ( ) ( ) ( )α α − α α −1 2= 0,1 = 1,1,0 , = 1,0 = 1, 1,0 ,

( ) ( ) ( ) ( )3 4= 1, 1 = 1,0, 1 , = 1,1 = 1,0,1 ,α α − − α α − −

( ) ( ) ( ) ( )5 6= 0, 1 = 0,1, 1 , = 1,0 = 0, 1,1 .α α − − α α − −

It should be noted that the dispersion equation (6), which 
determines the excitation spectra, is valid for an arbitrary ra-
tio of material constants, i. e. various phase states and the 
temperature range of the magnet’s order existence (excluding 
the fluctuation area).

In  [32-36, 53], the solutions of  the dispersion equa-
tion (6) at T = 0 were studied in detail both for an isotropic 
spin nematic with S = 1 and for a non-Heisenberg magnet 
with uniaxial anisotropy. It was shown that at T = 0, two 
branches of elementary excitations are realized in the mag-
net, one of which is precession and is associated with the 

transition of the magnetic ion from the basic state 1( )E  to the 
first non-excited state 0( )E , i.e. in this mode, the alternating 
spin density fluctuations are associated with turns of the di-
rections of the main axis of the quadrupole ellipsoid. The 
second branch of excitations is associated with the transition 
of the magnetic ion from the ground state 1E  to the state −1E . 
This mode includes longitudinal fluctuations of the modulus 
of the magnetization vector, the direction of which remains 
parallel to the main axis of the ellipsoid of quadrupole mo-
ments, deformation of the ellipsoid and its rotation around 
the magnetization, i.e. this mode is a longitudinal branch 
of the oscillations. It should be noted that in an isotropic 
non-Heisenberg magnet with S  = 1  in  the non- magnet-
ic phase, both branches of excitations coincide (see [26]). 
In addition to these excitation branches, another branch as-
sociated with the excited states of the magnetic ion −→0 1E E  
is realized in the model studied here (see Fig. 2), i.e., the 
temperature “thaws” the degree of freedom of the magnet-
ic field ion. Moreover, the excitation branch associated with 
the transition of the magnetic ion −0 1E  is not a relaxation 
one. We study in more detail the excitation spectra of the 
non-Heisenberg anisotropic antiferromagnetic at different 
ratios of exchange integrals.

4.1   Excitation spectra in  the FM  phase at  0T ≠
As noted earlier, the FM phase is implemented in the sys-

tem under consideration at J > K and < CT T . Let’s consid-
er the solutions of the dispersion equation (6) in this state. 

Fig. 2. The energy levels of  the magnetic ion and the 
transitions between them.
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At nonzero temperatures, this equation defines three branch-
es of spin disturbances, two of which can be conditionally 
called “transversal”, since they are associated with vibrations 
of a quadrupole ellipsoid, and one “longitudinal”, associ-
ated with an oscillation of the magnetic moment modulus 
(quantum spin contraction). The explicit form of the spectra 
of these excitations has the form

	 ( ) ( ) ( )−ε − − α

1 1 1 3= ,k E K k b 	 (8)

	

( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

⊥
−

−

 ε + + α + α ± 

  − + α − α +  ±  
 + α α − 

2,3 10 0 1 2 5

1/22
10 0 1 2 5

2
2 5

1=
2

1 .
2 4

E E J k b b

E E J k b b

b b J k K k

	 (9)

In (8) and (9) ijE  — is the difference in the energy levels 
of the magnetic ion (see expressions (2)), α( )ib  are the end 
multipliers determined by the ratios (7).

Given the explicit form of energy levels the magnetic ion 
in the FM phase and the terminal multipliers, as well as the 
fact that in this case the u-v transformation parameter θ = 0, 
the spectra (8) and (9) can be represented in a more compact 
form:

	 ( ) ( )( )ε − −

1 0 0= 2 ,zk J K K k S 	 (10)

	

( ) ( )( )

( ) ( )( )

( ) ( )( )( )

⊥ε − − ±

  
− − +    ±  

 + − −  

2,3 0 0

1/2
22 0 2

2

20
2

1= 2
2

( )1 .
2

z

z

k J K J k S

J k K k S q

D J k K k q

	 (11)

In addition, when obtaining expressions (10) and (11), 
it was taken into account that in the FM phase

α3( ) = ,zb S

as well as 

−0 2
2 = 3 ( ) 2.zq S

The temperature dependence of the spectra of elemen-
tary excitations in the FM phase is determined by depend-
ence on the temperature of the average magnetic moment

zS  and the components of the quadrupole moment tensor 
0
2q  (see expressions (3)–(5)).

Let us consider the behavior of magnon spectra at differ-
ent values of the one-ionic anisotropy constant and at nonze-
ro temperatures. Note that the temperatures in question are 
significantly lower than the Curie temperature, which is due 
to the fact that the problem is considered in the approxima-
tion of the average.

First of all, let us consider the “longitudinal” branch 
of the excitations of ε1. As can be seen in Fig. 3 a–d and 
Fig. 3 e–h, and also based on formula (10), this branch de-
pends on the wave vector as  2k , and this dependence var-
ies slightly with changes in  temperature and the constant 
of single-ion anisotropy. In addition, there is an energy gap 
in the spectrum of longitudinal magnons, which is clearly 
independent of the anisotropy 0 2

2 2, , zS q q  implicitly depend 
on the anisotropy constant:

	 ( ) ( )ε −

1 0 00 = 2 .zJ K S 	 (12)

The behavior of the “transversal” branches of excitations 
is more complex. As follows from the correlations (9) and 
(11), these two branches are entangled, and the higher the 
temperature, the less pronounced this “entanglement”. So, 
at a fairly low temperatures and low values of the anisotropy 
constant (see Fig. 3 a, b), the branches ⊥ε2  and ⊥ε3  practically 
merge into each other. This behavior is easy to understand 
if you pay attention to  the behavior of  the order parame-
ters zS  and 0

2q  (see fig. 1 a, b, c). As follows from these 
graphs, at very low temperatures t = 0.003 and low anisotro-
py / = 0.1d j , the expression is

( )− →
22 0

2 0.zS q

Then, as follows from (11), the “transversal” branch ε2, 
at small wave vectors, behaves as follows:

⊥ε α +2
2 = / 2,k D

and the second “transversal” branch is dispersionless:

⊥ε − −3 0 0= / 2.J K D

With the growth of  the wave vector, the branches ⊥ε2  
and ⊥ε3  merge into each other, i.e. at  large k, the branch 

⊥ε2  becomes dispersionless, and ⊥ε3  behaves like a quadratic 
parabola.
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Fig. 3. Spectra of elementary excitations in the FM phase at  / = 0.003T J  (a-d) and 0.3 (e-h) and anisotropy values 
/ = 0.1( , ), 0.3 ( , ), 0.5 ( , ),1.0 ( , )D J a e b f c g d h . Solid lines correspond to the “longitudinal” branch of excitations ⊥ε2 / J , 

dashed lines correspond to the “transverse” branch ⊥ε2 / J , and the dotted line is a “transverse” branch ⊥ε3 / J , the exchange 
integrals J = 1, K = 0.5.
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With an increase in temperature, for example at T/J = 0.3, 
as follows from Fig. 1 a, b, c, the value is

( )− ≠
22 0

2 0.zS q

This leads to the fact that the “transversal” branches be-
gin to “push apart”, and the higher the anisotropy of the 
magnet, the more active the pushing occurs. So, for D/J = 1, 
the “transverse” branch ⊥ε2  becomes dispersionless, and the 
branch ⊥ε3  behaves like 2k , moreover, the energy gap of this 
branch significantly depends on the value of the anisotropy 
constant (see Fig. 3).

4.2   Excitation spectra in  the SN  phase at  0T ≠
Let us now consider the behavior of the excitation spectra 

in the SN phase at different values of the anisotropy constant 
and arbitrary temperatures (excluding the fluctuation region). 
It is assumed that J < K, and the u-v conversion parameter 
θ in this case is equal to π/4. Taking into account that in this 
phase = 0zS , and 2

2q  coincides with the end factor α3( )b , 
the spectra of all three excitation branches can be represent-
ed as

	
( ) ( )

( )( ) ( ) ( )( ){ }
ε α ×

× − + −



4 3
1/2

0 0

=

2 ,

k b

K K k K K k J k
	 (13)

	 ( )
( ) ( )( )

( ) ( ) ( )( )
⊥

  
+ α − ×  

  ε =    × + α + −    

1/2

2 0

5

2 0

2
,

2
2

D
b K K k

k
D

b K K k J k
	 (14)

	 ( )
( ) ( )( )

( ) ( ) ( )( )
⊥

  
+ α − ×  

  ε =    × + α + −    

1/2

6 0

6

6 0

2
.

2
2

D
b K K k

k
D

b K K k J k
	 (15)

The dependence of the excitation spectra on the temper-
ature is determined by the terminal factors α( )ib . As in the 
FM phase, there are three branches of the SN phase, one 
of which (13) is a “longitudinal” and is related to the oscil-
lation of the length of the magnetic moment vector, and the 
other two (14) and (15) are opposite and are related to the 
oscillations of a quadrupole ellipsoid.

Figure 4 shows the excitation spectra of a non-Heisen-
berg ferromagnet at different temperatures and different val-
ues of the anisotropy constant. As can be seen in Fig. 4 a–d, 

one of the transverse excitation branches ⊥ε6( ) is dispersion-
less at  low temperatures and at arbitrary values of  the an-
isotropy constant. However, with increasing temperature 
and anisotropy constants, this branch of excitations shows 
dependence on the wave vector, although it is not clearly ex-
pressed. This result can be understood if we take into account 
that the terminal multiplier α6( )b  is determined only by the 
excited energy levels −0 1,E E , and therefore differs little from 
zero at arbitrary temperatures and values of the anisotropy 
constant D. The magnitude of the energy gap in this spec-
trum is determined by the anisotropy constant and increases 
significantly with the growth of D (see Fig. 4). The “trans-
versal” branch 5( )⊥ε  has an energy gap, which significantly 
depends on the anisotropy constant. Besides, Fourier images 
of the exchange integrals 0 0,K J  also contribute to the gap. 
As can be seen in Fig. 4, this branch of excitations as a func-
tion of the wave vector behaves as  +2k a, and the temper-
ature dependence is determined by the terminal factor α2( )b , 
i.e. the energy levels 1E  and 0E .

It should be noted that the “longitudinal” branch of the 
excitations ε4 is gap-free and, as follows from (13), should not 
depend on the anisotropy constant. However, as can be seen 
in Fig. 4, this branch, although weakly, still depends on an-
isotropy. This dependence is due to the influence of the 2

2q  
tensor component of quadrupole moments (in the SN phase 

α2
2 2= ( )q b ), which is associated with the anisotropy constant 

through the energy levels 1E  and −1E  of the magnetic ion (2), 
i.e. it is associated with the transition of the magnetic ion 
from the ground state to the most excited one.

4.3   Excitation spectra in  the  
AFM phase at 0T ≠

Let’s consider the behavior of excitation spectra in The 
AFM phase. In this phase, the exchange constants are con-
nected by the ratio |J| > K, (J < 0) and the system can be di-
vided into two equivalent sublattices. Since the sublattices are 
equivalent, it is sufficient to consider the spectra of the- one 
sublattice. As before, the spectra of elementary excitations 
are determined by the dispersion equation (6), which is valid 
at arbitrary temperatures and an arbitrary ratio of the mate-
rial parameters of the system. The solution of equation (6) 
gives three branches of the magnon spectra, which have the 
form

	
( )

( )( ) ( )( ){ }
ε α ×

× − − − +



7 3
1/2

0 0 0 0

=

2 2 ,

b

J K K k J K K k
	 (16)
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Fig. 4. The spectra of elementary excitations in a non-Heisenberg ferromagnet in SN phase at T/K = 0003 (a-d) and 0.4 (e-h)  
and the values of D/K = 0.1 (a, e), 0.3 (b, f), 0.5 (c, g), 1.0 (d, h). The solid lines correspond to the “longitudinal” branch 
of excitations ||

4å  / K, dashed lines the “transversal” branch ⊥ε5 / K , and the dash-dotted “transversal” branch 6
⊥ε  /K, the ex-

change integrals J = 0.2 K = 1.0.
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Fig. 5. Spectra of elementary excitations of a non-Heisenberg ferromagnet in the AFM phase at T/|J| = 0.003 (a-d) and 0.4  
(e-h). D/|J| = 0.1 (a, e), 0.3 (b, f), 0.5 (c, g), 1.0 (d, h). Solid lines correspond to the “longitudinal” excitation branch ε7 / J , 
dashed lines correspond to the “transversal” branch ⊥ε8 / J , and dashed lines correspond to the “transversal” branch ⊥ε9 / J ,  
exchange intervals J = -1.0, K = 0.5.
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−⊥
 + + α α − ε = ± 
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	 (18)

In the ratios (16), (17) it is taken into account that in the 
AFM phase the parameters of  the u-v  transformation are 
equal to θ = 0, θ = π/2 for the first and second sublattices, 
respectively.

Let’s analyze the received branches of the expectations. 
The branch of the ε7( )k  (see formula (17)) It is a longitudinal 
branch of excitations, i.e. it is associated with the transition 
of a magnetic ion from the ground state 1( )E  to the most ex-
cited −1( )E  and with an oscillation of the length of the mag-
netic moment vector. As follows from Figure (16) and Fig. 5, 
this branch of excitations is symmetric with respect to k = 0 
and k = π, moreover, the dependence on the wave vector 
is quite weak. In addition, this branch practically does not 
depend on temperature and the constant of single-ion ani-
sotropy, and the energy gap in the spectrum of longitudinal 
excitations is determined by zero Fourier components of ex-
change integrals. 

In addition to the “longitudinal” excitation branch, there 
are two “transversal” excitation branches in the AFM phase 
(see expression (17)). As follows from (17) and Fig. 5, these 
branches are “entangled”, and with an increase in temper-
ature and the anisotropy constant, this “entanglement” de-
creases and between the branches ⊥ε8  and ⊥ε9 , there is a sig-
nificant repulsion. Note that the excitation described by the 

⊥ε8  spectrum is associated with the transition of the magnetic 
ion from the basic state 1( )E  to the first excited state 0( )E . 
This branch of excitations has a fairly standard form for the 
AFM phase, and the energy gap in the ⊥ε8  spectrum signifi-
cantly depends on both temperature and the anisotropy con-
stant. As for the ⊥ε9  branch, it is associated with the transition 
of the magnetic ion from the first excited state 0( )E  to the 

most excited state −1( )E . It is noteworthy that this excitation 
is not relaxation and has a number of features. Thus, at suf-
ficiently low temperatures, this branch of excitations essen-
tially depends on the wave vector (at low (k ∼ 0) and large  
(k ∼ π) wave vectors), and in the rest of the region of the 
wave vector is dispersion-free. With the growth of temper-
ature and anisotropy, this branch becomes more and more 
dispersive throughout the entire range of wave vectors.

5. PHASE DIAGRAM
The conducted studies allow us to construct a cross-sec-

tion of the phase diagram of a non-Heisenberg ferromagnet 
on the plane (J,K) at different-temperature values. As noted 
earlier, such a phase diagram was obtained for the system 
under study at T = 0 (see [26, 43]). 

As  is  known, the phase transition line is  determined 
from the condition of  equality of  thermodynamic poten-
tials defined in  the corresponding phases [13]. Thus, the 
phase transition lines FM-SN, SN–AFM, AFM–ON, ON–
FM can be obtained from the condition of equality of free 
energies in the corresponding phases. Free energy is equal 
to  −= lnF T Z , where Z is the statistical sum in the corre-
sponding phase, which is determined by the ratio

( )
−

−∑
= 1,0,1

= exp / .M
M

Z E T

Fig. 6. Phase diagram of a non-Heisenberg anisotropic 
magnet with S = 1.
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Taking into account the ratios (2), (3)–(5) and (7), 
as well as the values of the u-v transformation parameters 
in  the corresponding phases, numerical analysis allows 
us to construct a phase diagram at different values of the sin-
gle-ionic anisotropy constant and free temperatures (exclud-
ing the fluctuation region).

So, from the equality of  free energies in  the FM  and 
SN phases, we obtain a phase transition line between them:

	 0 0= .J K 	 (19)

Comparing the free energies in the phases SN and AFM, 
we obtain the phase transition line between them having the 
form

	 0 = 0.J 	 (20)

If we compare the free energies in the phases of AFM and 
ON, we get a phase transition line between them in the form 

	 0 0= ,J K 	 (21)

and from the equality of  free energies in  the ON  and 
FM phases we obtain

	 0 = 0.J 	 (22)

As follows from the relations (18)–(21), the phase dia-
gram of a non-Heisenberg anisotropic magnet with S = 1 
does not depend on either temperature or the value of the 
anisotropy constant and exactly coincides with the phase di-
agram of a similar system obtained earlier for the case T = 0 
(see [26, 42]). An explicit view of the non-Heisenberg aniso-
tropic magnet phase diagram with S = 1 is shown in Fig. 6. 

It should be noted that the lines of phase transitions (18)-
(21) can be determined by analyzing the excitation spectra 
in the corresponding phases. Thus, in the FM phase, the 
spectrum of longitudinal magnons loses stability (at k = 0) 
on the line 0 0=J K  (see (10)). On the same line, the branch 
of “longitudinal” magnons in the SN phase loses stability 
(at k = π) (see (13)). Therefore, the line defined by the ratio 
(18) is the FM-SN phase transition line. At k = 0, the spec-
trum of three-dimensional magnons (13) in the SN phase 
on  the line 0 = 0J  loses stability. Similarly, in  the AFM 
phase, the spectrum of (16) “longitudinal” excitations be-
comes unstable at k = π on  the line 0 = 0J , i.e. this line 
is the SN–AFM phase transition line. The same spectrum 

(16) loses stability at k = 0 on the line 0 0=J K , which in-
dicates an AFM-ON phase transition. Moreover, the insta-
bility of the “longitudinal” branch of the disturbances (10) 
at k = π indicates that there is a phase transition on the line 

0 = 0 |J  AM–ON.
The analysis of  the phase diagram and the excitation 

spectra of a non-Heisenberg ferromagnet with anisotropy 
of the “light axis” type indicates that the FM-SN phase tran-
sition is a degenerate transition of the first kind. 

6. CONCLUSION
The paper analyzes the dependence of the order parame-

ters, free energy density and the spectra of elementary excita-
tions on the temperature and the value of the constant of sin-
gle-ion anisotropy of the type “light axis” of a non-Heisen-
berg anisotropic magnet with S = 1 and dimension d = 3 
in the mean field approximation.

Numerical analysis of both vector and tensor order pa-
rameters in ferromagnetic, nematic, antiferromagnetic and 
orthogonal-nematic phases makes it possible to determine 
the temperature of  transition to  the paramagnetic state. 
In addition, the temperature dependence of the components 
of the quadrupole moment tensor 0

2q  (see Fig.1 a,..., l ) in-
dicates that at  > QT T , i.e. in the paramagnetic phase, the 
rotational symmetry of the Qaß tensor is also violated, which 
is due to the presence of a single-depth anisotropy of the 
type “light axis”. Note that the transition temperatures 
significantly increase with the growth of the one-ion con-
stant anisotropies of the type “light axis” (see Fig. 1), which 
is quite expected, since a large light-axial anisotropy prevents 
the destruction of  the magnetic order by  thermal fluctua-
tions. Also, in the mean field approximation, we carried out 
an analytical assessment of the temperatures of transitions 
to a more symmetrical phase from both phases with a vec-
tor parameter of order (FM, AFM) and phases characterized 
by tensor parameters (SN and ON). These estimates show 
that the transition temperatures significantly depend on ten-
sor order parameters and biquadratic exchange interaction.

Of particular interest is  the dependence of the spectra 
of elementary excitations of a non- Heisenberg anisotrop-
ic ferromagnetic with a spin of a magnetic ion unit on both 
temperature and the anisotropy constant. First of all, we note 
that, unlike the previously considered case, T = 0 [43], in the 
case under consideration, an additional branch of excitations 
arises associated with the transition of the magnetic ion from 
the first excited state of the magnetic ion 0( )E  to the most 
excited −1( )E , and this branch is not relaxation. Thus, in the 
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non-Heisenberg magnetism at arbitrary temperatures (below 
the critical temperature), three branches of elementary dis-
turbances are realized: two of which are transversal and are 
associated with the precession motion of a quadrupole ellip-
soid, and one is transversal, associated with a change in the 
length of the magnetic moment vector. The behavior of the 
excitation spectra in dipole and tensor phases is fundamen-
tally different. Thus, in the FM and AFM phases, the trans-
versal branches of the excitation at low values of the light-ax-
ial anisotropy constant and sufficiently low temperatures are 
strongly hybridized (see Fig. 3 and 5) and significantly de-
pend on the magnitude of the anisotropy. With an increase 
in the anisotropy constant, the “transversal” branches begin 
to push apart, and at high values of the single-ion anisotropy 
constant, the transverse branches associated with the transi-
tion of the magnetic ion −0 1E  become dispersionless. In the 
SN phase, the “transversal” branches of elementary distur-
bances are not hybridized, which is due to the equality of the 
average value of the magnetic moment to zero (at the node). 
In addition, in this phase, taking into account single-ion an-
isotropy removes the degeneration of the excitation branches, 
as is observed, for example, in an isotropic spin nematic [26].

The analysis of the free energy density and the spectra 
of “longitudinal” excitations makes it possible to construct 
a phase diagram of the system under study at arbitrary tem-
peratures and arbitrary values of the single-ionic anisotro-
py constant. The result of these studies is shown in Fig. 6. 
As shown in this figure, the system retains the same phase 
states that are realized at T = 0. In addition, the phase tran-
sition lines are similar to the case T = 0, i.e. they do not 
depend on either temperature or the value of the anisotropy 
constant. Thus, the phase diagram we obtained coincided 
with the phase diagram of the system under study at T = 0 
[53]. In addition, the phase transition in the case under con-
sideration is a degenerate phase transition of the first kind, 
as well as at T = 0. However, this does not mean at all that 
temperature and single-ion anisotropy do  not affect the 
properties of the spin nematic. As shown in this paper, tem-
perature and single-ion anisotropy fundamentally change the 
dynamic properties of the system.

It should also be noted that the analysis of  the spectra 
of elementary disturbances in the ON-phase has not been 
carried out in this work. This is the subject of a separate review.
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