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Abstract. In the mean-field approximation, the influence of both temperature and single-ion easy-axis anisotropy
on the phase states and excitation spectra of a non-Heisenberg antiferromagnet with S = 1 is studied. The tempera-
ture dependences of vector and tensor order parameters are determined both in phases with vector and tensor order
parameters. The dependence of excitation spectra on temperature and anisotropy constant has been studied. It is
shown that at temperatures other than zero, an additional (non-relaxation) branch of excitations arises. The tem-
perature dependence of the phase diagram has been studied.
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1. INTRODUCTION

In modern microelectronics and spintronics devices,
magnetic materials with a compensated magnetic moment
are actively used, i.e. magnets with antiferromagnetic order-
ing [1]. This choice is due to the fact that an exchange gain
effect is observed in antiferromagnets, which significant-
ly increases the frequency of antiferromagnetic resonance
to the terahertz range, and also significantly enhances oth-
er dynamic characteristics of the system, such as the limit-
ing velocities of domain walls [2] and magnetic vortices [3,
4]. Also, the spin current significantly affects the properties
of compensated magnets [5-12], and it is this circumstance
that makes them so attractive for use in spintronics. At the
same time, one of the “hottest” topics of the physics of mag-
netism is the search for new phase states of magnetically or-
dered systems.

The standard magnetic ordering is characterized by a vec-
tor parameter of the order (average value of the (S,) spin
at the node) [13-15], non- invariant with respect to time re-
versal. However, besides the standard magnetic order (fer-
ro- or antiferromagnetic), there are systems such as rare
earth dielectrics [16], iron-based superconductors [17-21]
and a number of others, in which magnetic ordering is more
complex than the standard one. This ordering includes
nematic [14, 15, 22-33]. This state is similar to ordering
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in liquid crystals [34], whence in fact the name “spinous
nematicus” was derived. Spin nematic states are found in
LiCuVO, magnets [33, 35, 36], rare-earth magnets [37] and
low-dimensional systems (see, for example, [30]).

In a magnet with S = 1, taking into account a large bi-
quadratic exchange interaction of the form K (SnSn,)2 leads
to the realization of a spin nematic state [38]. The spin ne-
matic is characterized by a spontaneous violation of rota-
tional symmetry, which is associated with spin quadrupole
parameters see [26-32]. Note that the quadrupole averages
characterizing the

Qup = (5P + sP5™) - %SQBS(S 1),
o,B=x7z

nematic state are invariant relative to time reversal. The
geometric image of these averages is a quadrupole el-
lipsoid with axes e, e, and e;, chosen in such a way that
<SaSB + SﬁS(x) =0ata B, o,p =1,2,3, and the semi-axes
of the latter are equal to (Slz),(Sz2 Y and <S32). At zero temper-
ature T = 0, the quadrangular ellipsoid degenerates into a flat
disk, <S12) = <S22> = 1,<S32) = (0. At a temperature different
from zero, but lower than the critical temperature 7' < T,
the value is 0 < (S32) < <512,2>: when T > T, the rotational
symmetry is restored Q&B [22, 39—42].
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Due to the isotropy of the exchange interaction, the di-
rection of the quantization axis z is arbitrary, the state of the
spin nematic can be described by introducing a vector-direc-
tor n, which is directed along the axis of rotation of a quad-
rupole ellipsoid. It is understood that the states with n and -n
are indistinguishable, and the value Qaﬁ is a quantum an-
alogue of the De Gennes order parameter, which is intro-
duced for ordinary nematic liquid crystals [34].

In the case when the exchange integral J < 0 is negative,
states with two magnetic sublattices arise for a crystalline
magnet. If the Heisenberg exchange exceeds the bi-quad-
ratic one, then the usual antiferromagnetic state is realized
in the magnet. In the opposite case, the situation is more
interesting and the question of the basic state is not trivi-
al, since the states with n and -n are identical. Within the
framework of the mean field approximation, it can be shown
that the system implements the state of an orthogonal ne-
matic, for which the directions n are orthogonal in two sub-
lattices [25, 26, 43]. Since there are three such directions
of vector n, in the one-dimensional case this state is defined
as not fully ordered (semiordered) [25], although the sta-
bility of the two-lattice phase within the framework of the
mean field approximation is proved for a square lattice [26],
and a three-lattice one for the triangular lattice [27, 28], see
Fig. 1, 2 in [28]. The orthogonal nematic-ferromagnetic and
orthogonal nematic-antiferromagnetic phase transitions oc-
curring with a change in the J/K parameter are degenerate
transitions of the first kind [26].

Most studies of spin nematics were limited to the case
of low temperatures when considering the isotropic model
[26-32], or a model taking into account the one-ionic aniso-
tropy [43-45]. As it was shown in [43], the influence of a sin-
gle-ionic anisotropy of the type “light axis” leads to sig-
nificant changes in the dynamics of the spin nematic even
at T = 0, although it does not change the phase pattern com-
pared with the isotropic case. The influence of temperature,
i.e. thermal fluctuations, on the properties of spin nematic
has not been sufficiently studied [40, 46-49]. In [47, 48], the
influence of the temperature on the behavior of both the or-
der parameters and the excitation spectra of a magnet with
large single-ion anisotropy, comparable or even exceeding
the constant of the bilinear exchange interaction. However,
these models do not describe the state of the spin nematic.
In this regard, it is of interest to study the effect of both sin-
gle-ionic anisotropy of the type “light axis” and temperature
on the behavior of order parameters and excitation spectra
at different ratios of the material parameters of the system.

2. MODEL AND BASIC CONDITIONS
As a model, let us consider a non-Heisenberg antiferro-
magnet, in which, in addition to the bilinear exchange inter-
action, the bi-quadratic exchange interaction is taken into
account, as well as one-ionic anisotropy of the type “light
axis”. The spin of the magnetic ion is S = 1. The Hamiltoni-
an of such a model can be represented as

=3 2[5 K58, |-
-23(s)

n

ey

where §, is the spin operator at the n-th node, J, K are the
constants of bilinear and biquadratic exchange interactions,
respectively, D > 0 is a constant of one- ionic anisotropy
of the type “light axis”. We will limit ourselves to considering
lattices that allow splitting into two equivalent sublattices, for
example, cubic or square. Previously, similar models were
considered only when T = 0. It was shown in [26, 43] that
in a non-Heisenberg magnet with S =1 at T = 0 , it is pos-
sible to realize four phase states: the ferromagnetic phase
with a predominant bilinear exchange interaction (J > K), at
J<0and|J|> K an antiferromagnetic state is realized, but if
J > 0,K>0and]J < K, the nematic phase is stable in the
system, and finally, if J < 0, K < 0 and | J [<| K|, then the
orthogonal-nematic phase is realized.

Let us consider the behavior of the system described
by the Hamiltonian (1) at a temperature other than zero,
but not exceeding the critical temperature. Using a diagram-
matic technique for Hubbard operators [26, 44, 45, 50-52],
let’s determine the energy levels of the magnetic ion

E  =-2+Hcos20- BY 7 B2sin20
1,-1 D 2 2 > )
E, = 2B),

where
— K
H=|J,-=0((s%),
2

BO=K00 2 _ Ky

2 3 4, b ) a4

_1 Ky A2 Ko 0V, Ko 2y?
_5[J0—71<S > +E(q2) +T(q2) 5
¢ is an additive constant independent of spin operators,
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=3[ )2 = ([ )-((])

are components of the quadrupole moment tensor.
Using the connection of spin operators with Hubbard op-
erators [26, 46, 53, 54]
§7 = cos20( X, = x, ")~ sin26( X} + x, 1),

n

Sy = 2| sinoX[! — x;10)+ cosd( X, + x1)

n
s, =(s1)
it is possible to determine the dependence of vector and ten-
sor order parameters on both temperature and material pa-

rameters of the system, i.e. on the magnitude of exchange
integrals and the anisotropy constant:

exp(—E1 /T) - exp(—E_1 /T)

<SZ> = c0s20 - Y
qg _ 3exp(—E1 /T) -|-Zcxp(—E_1 /T) ), @
q22 _ sin2e(exp_ E, /T) - exp(—E_1 /T) 5)

Z >

B (3)—(5) Z is the statistical sum, which in this case
is equal to

zZ= Y exp[—ETM]:

M=-1,0,1
= €X _El + €X] _EO + €X] _E_]
= exXp T p T p T !

E,, stands for the energy levels of the magnetic ion, de-
termined by expressions (2). Also in formulas (3)-(5) and the
expression for the statistical sum, the Boltzmann constant
is equal to one, and the temperature is measured in units
of energy. 0 is the parameter of the Bogolyubov u-v transfor-
mation [47], determined by the ratio

Hsin20 = B22 c0s26.

Note that the parameter 6 clearly does not depend on the
constant of single-ionic anisotropy, but depends both on the
constants of exchange interactions and parameters of the or-
der <Sz> and 422.
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3. ORDER PARAMETERS OF THE NON-
HEISENBERG ANTIFERROMAGNET

3.1 Ferromagnetic phase
As shown in [26, 43], in the case of low temperatures and
predominant bilinear exchange interaction (J > K), the pa-
rameter 0 is zero (6 = 0). Taking this into account, as well
as the fact that the lowest energy level of the magnetic ion
at T—0is E,, it follows from the ratios (3)—(5)

(5) =1, =12 -

These values of the order parameters indicate that at J > K
and 6 = 0, the ferromagnetic phase (FM) is formed in the
system. Numerical analysis of the system of equations (3)—
(5) allows us to determine the effect of thermal fluctuations
on the behavior of the system parameters in the FM phase.
Figures 1 a, b, c show these results for the FM phase at dif-
ferent values of the single-ionic anisotropy constant.

All variables in Figure 1 are given in relative units (D/J,
T/J). As can be seen in Fig. 1 a, b, ¢, the average value of the
magnetic moment (per node) decreases with increasing tem-
perature, this is due to the increase in thermal fluctuations.
Turning the average magnetic moment to zero makes it pos-
sible to determine the Curie temperature (see Fig. 1 a, b, ¢),
which increases with the growth of the one-ion anisotropy
constant. This is easy to understand if we remember that
the magnetic moment in the ferromagnetic phase is orient-
ed along the axis of light magnetization, and the greater the
anisotropy constant, the more energy is necessary for the
destruction of the vector magnetic order and therefore the
higher is the critical temperature.

The analysis of equations (3)—(5) allows us to estimate
the Curie temperature in the FM phase:

0
T = _K0 2+q2.
C 0 2 3

If we neglect the biquadratic exchange interaction, then
this expression is for the Curie temperature corresponds
to the standard result obtained in the mean field approxima-
tion [55]. In addition, it should be noted that the Curie tem-
perature estimate we have obtained implicitly depends on the
magnitude of the one-ionic anisotropy constant. As follows
from (3)—(5), as well as Fig. 1 a, b, c, at temperatures close
to T, the parameter qg the more strongly differs from zero,
the greater the value of the single-ion anisotropy constant,
since a large D value stabilizes the axis of the quadrupole
ellipsoid.
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Fig. 1. Dependences of the order parameters of a non-Heisenberg anisotropic ferromagnet with S = 1 on temperature
in various phases. a-c FM phase, exchange integrals J = 1, K = 0.5, d-f AFM phase, exchange integrals J = -1, K = 0.5,
D/1=0.1(a,d), D/J=0.5 (b, e), D/J = 1.0 (c, f). j-i SN-phase, exchange integrals J = 0.2, K = 1.0, g-1 show ON-phase,
exchange integrals J = -0.3, K=-1.9, D/K = 0.1 (j, g), D/K = 0.5 (h, k), D/K = 1.0 (i, 1). Solid lines: <SZ>, dashed lines

@3, dashed dotted lines qg )

As for the behavior of tensor order parameters in the
FM phase, it is quite expected: parameter q% = 0 in the en-
tire temperature range, since in this phase

() ={(7))

and the parameter is qg is different from zero in the entire
temperature range, since it is proportional to (Sz) and
does not depend on the orientation of the magnetic moment.
At T > T, in the isotropic case, the rotational symmetry
of the tensor is

1
QO‘B = 5<S(XSB + SBS(X>

restored, i.e.

() =)= (<)) =

However, as can be seen in Fig. 1 a, b, c, the pres-
ence of single-ion anisotropy of the “light axis” type leads
to the fact that the component of the quadrupole tensor qg

W o

significantly depends on the value of the anisotropy constant,
which violates the rotational symmetry of the Q(xﬁ tensor at
T>T,.

3.2 The nematic phase
Let us now consider the situation when the biquadratic
exchange interaction is predominant, i.e. when the parame-
ter © in this case is equal to t / 4 [26, 43]. In addition, in this
case, at T — 0, the state of spin nematic (SN) is realized
in the magnet, which is characterized by the following pa-
rameters of the order:

<SZ> 0,80 =1,42=1.

The geometric image of this state when at low tempera-
tures is a uniaxial ellipsoid with semi-axes

fef) e
o7
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i.e. an infinitely thin disk lying in the zx plane. The vector
director is perpendicular to the plane of the disk, i.e. directed
along the y axis.

The behavior of the parameters of the order of a non-Hei-
senberg ferromagnetic with S = 1 as functions of temperature
and anisotropy constant is shown in Fig. 1 j, h, i. As can
be seen in Fig. 1 j, h, i, with increasing temperature, the
quadrupole parameter q% becomes less than one. This means

2
that <(Sy ) > # 0 and, therefore, the quadrupole ellipsoid be-

comes biaxial, and its orientation is determined by the axis
of anisotropy.

As the numerical analysis of the equations (3)—(5) shows,
given in Fig. 1j, h, i, the average value of the magnetic mo-
ment (per node) in the SN phase is zero over the entire tem-
perature range and at any values of the anisotropy constant.
AS far as the tensor parameters of the order are concerned,
the component of the quadrupole moment tensor

¢l o

is zero at temperature TQ, which determines the tempera-
ture of the phase transition from the SN phase to the par-
amagnetic one. It should be noted that this temperature
increases with the growth of the one-ionic anisotropy con-
stant (although this growth is not as significant as during the
FM-phase—paramagnetic phase transition). Temperature
dependence of the parameter of the order qg shows that at
T>T, o the rotational symmetry of the roB tensor is violated,
which is associated with the presence of anisotropy of the
“light axis” type. In addition, using the ratio (3)-(5), in the
approximation of the mean field, we estimated the transition
temperature (7, Q)from the spin nematic state to the paramag-
netic phase:

K,2+q
T =0
¢ 2 3

N O

As you can see, this temperature, as expected, is deter-
mined only by the biquadratic exchange interaction and ten-
sor parameters of the order.

3.3 Antiferromagnetic phase
Let us now consider a situation in which the constants
of exchange interactions are related by the ratio [J| > K, where
J <0, K > 0. In this case, it is energetically advantageous
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for the system to split into two equivalent sublattices, i.c.,
to switch to the antiferromagnetic state (AFM). As shown
in [26, 43], at T — 0, the u-v transformation parameter takes
the values ©, = 0 and 8, = w / 2 for the first and second sub-
lattices, respectively. The order parameters of the first and
second sublattices at T = 0 have the form [43]

(s5)=is5)

It is taken into account here that the magnetizations

10 _ 0 _1.2 _ 2 _
= Loy = o) = Laya) = ¢ =0

of the first and second sublattices are antiparallel. It is of in-
terest to investigate the behavior of the parameters of the
sequence at arbitrary temperatures in the AFM phase using
the ratios (3)—(5). At the same time, it is enough to con-
sider one sublattice, since they are equivalent. A numerical
analysis of the dependence of the parameters of the order
of a non-Heisenberg easy-plane magnet on temperature and
the value of the anisotropy constant in the AFM phase is giv-
enin Fig. 1 d, e, f.

It follows from Fig. 1 d, e, f that the behavior of the av-
erage value of the magnetic moment (per node) is analogous
to its behavior in the FM phase, i.e., with an increase in tem-
perature, it decreases, which is associated with the influence
of thermal fluctuations. Just as in the FM phase, turning the
average magnetic moment to zero makes it possible to deter-
mine the Neel temperature. However, as can be seen in Fig.
1j,h,iand Fig. 1 d, e, f, the Neel temperature is significantly
higher than the Curie temperature and increases with an in-
crease in the one-ion anisotropy constant. The dependence
of the Neel temperature on the anisotropy constant is easy
to understand if we recall that the magnetic moment of the
sublattice in the AFM phase is parallel to the axis of light
magnetization, and the greater the anisotropy constant, the
more energy is needed to destroy the vector magnetic order,
and consequently, the higher the critical temperature. More
interesting is the question of the growth of the Neel temper-
ature in comparison with the Curie temperature at the same
values of the anisotropy constant. So, if we do not take into
account the biquadratic exchange interaction (Heisenberg
magnet), then the Curie and Neel temperatures do not co-
incide, and correspond to the standard result obtained in the
mean field approximation [47]. When biquadratic exchange
interaction is enabled, the situation changes. So, when
J > K > 0 the bilinear exchange interaction tends to establish
a ferromagnetic ordering, and the biquadratic one is qua-
si-antiferromagnetic. Such competition leads to a decrease
in the Curie temperature (see the expression for 7 in the
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FM phase). In the AFM phase (at J < 0,K > 0, |J| > K) both
bilinear exchange interaction and biquadratic interaction
tend to establish antiferromagnetic ordering. This circum-
stance leads to an increase in the Neel temperature compared
to the Curie temperature. In addition, the analysis of equa-
tions (3)-(5) makes it possible to estimate the Neel tempera-
ture in the AFM phase:

0
Ty =[|J0|+% 2+3q2.

As for the temperature dependence of the tensor order
parameters in the AFM phase, it is analogous to their behav-
ior in the FM phase.

3.4 Orthogonal-nematic phase

If the exchange interaction constants are related by the
ratio J < 0,K < 0, [J] < |K], then splitting into two sublat-
tices is advantageous for the magnet. However, the ordering
in this case is not antiferromagnetic but orthogonal-nematic
(ON) [26, 56]. This state can be considered as a nematic state
in each of the sublattices, but the state vectors of the sublat-
tices are orthogonal (for more details, see [26]). At T =0, the
parameters of the ON-phase sequence are equal to

_ 0.0 _ 0 _
<Slz>_<szz>_0"12(1)_‘12(2)_1’
2 _ 2 _

By = e =L

In the case of temperatures other than zero, the behavior
of the order parameters is determined by the correlations (3)-
(5). Numerical analysis of these correlations allows us to de-
termine the dependence of the order parameters on both
temperature and the value of the single-ion anisotropy con-
stant. The results of such an analysis are shown in Fig. 1 g,
k, 1. At the same time, it is taken into account that the sub-
lattices are equivalent and it is sufficient to consider the be-
havior of one of the sublattices.

As follows from our analysis of relations (3)-(5), the or-
thogonal-nematic state is preserved throughout the temper-
ature range (excluding the fluctuation region), i.e.

<S;> =0, i=12,

and the behavior of tensor parameters of the order qg ,q22
is similar to their behavior in the SN phase. It should be not-
ed that the conversion to zero of the parameter qg allows es-
timating the transition temperature of the magnet from the
orthogonal-nematic phase to the paramagnetic one. As can

be seen from the comparison of Fig. 1 d, e, fand Fig. 1 g, k,
1, this temperature (TQI) is significantly less than the tempera-
ture of the SN-phase— paramagnetic phase transition. When
describing both AFM and ON phases we used extended zone
schemes. In this case, it turns out that this representation
is quite convenient and visual, since the sub- lattices are
equivalent. In this scheme, it is necessary to change the con-
stant of the biquadratic exchange action in the energy levels
of the magnetic ion (2)

Iy

2

K — -

0| X

Then an analytical estimate of the temperature in the
transition ON-phase—the paramagnetic phase has the form

To :@22(13-

Thus, both numerical analysis and analytical estimation
have shown that temperature TQl is significantly less than
temperature TQ.

4. DYNAMICS OF THE SPIN NEMATIC
AT ARBITRARY TEMPERATURES

We investigate the behavior of the spectra of elementary
excitations of the system under consideration at temperatures
other than zero. The excitation spectra are determined by the
poles of the Green’s function [44, 45, 47, 49, 51, 52], which,
within the framework of the Hubbard’s operators technique
is defined as follows [32, 46, 49, 51, 52]:

G (nn,v) = —<f)?;‘ (1) X% (T')>,

where

Xi‘(r) = exp(Hr)X,}l‘ exp(—Hr1)

is the Hubbard operator in the Heisenberg representation, T
is the Wick operator, A are root vectors defined by the algebra
of Hubbard operators [44, 47]. The derivation of the disper-
sion equation is described in detail in the works [39, 44, 46,
51, 52], therefore, here we give only the form of this equation

det“fil.j + xj“ =0, i,j=12,..8, (6)

where

JETP, Vol. 165, No. 1, 2024
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G(‘)x(u)n) = [iwn + OLE:I_l

is Green’s zero function,

¢y (B) = 0y (8) 4
ay (oB) = ¢; (o), (-B).

The components of the vector c(?») are determined from
the connection of spin operators with Hubbard operators,
and the matrix ;1””, can be represented as

A a3 ~s
Anlnl - AnInZ @ Anan,

b(a) = <0cX> are terminal factors, with the decisive one that
can be explicitly represented as |51, 53]

_ —exp(—E, /T)+exp(-E, /T)

b(oy) = (o) 7 ’
bow) = —4(o) = LT P CEL T

b(ots) = ~b(ag) = exp(-E, / T) —Zexp(—E1 /T).

where E; are the energy levels of the magnetic ion (i= 1, 0,-1),
determined by the relations (2), and o, root vectors (i= 1, ..., 6),
the components of which are determined by the algebra
of Hubbard operators [39], and in this case are equal to:

o = 0(0,1) = (-1,1,0), oty = &x(1,0) = (1,-1,0),

oy = o1,-1) = (1,0,-1), a4 = o(~1,1) = (-1,0,1),

o5 = (0,-1) = (0,1,-1), oty = ax(~1,0) = (0,~1,1).

It should be noted that the dispersion equation (6), which
determines the excitation spectra, is valid for an arbitrary ra-
tio of material constants, i. e. various phase states and the
temperature range of the magnet’s order existence (excluding
the fluctuation area).

In [32-36, 53], the solutions of the dispersion equa-
tion (6) at T = 0 were studied in detail both for an isotropic
spin nematic with S = 1 and for a non-Heisenberg magnet
with uniaxial anisotropy. It was shown that at T = 0, two
branches of elementary excitations are realized in the mag-
net, one of which is precession and is associated with the
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E,

Fig. 2. The energy levels of the magnetic ion and the
transitions between them.

transition of the magnetic ion from the basic state (£)) to the
first non-excited state (£;), i.e. in this mode, the alternating
spin density fluctuations are associated with turns of the di-
rections of the main axis of the quadrupole ellipsoid. The
second branch of excitations is associated with the transition
of the magnetic ion from the ground state £, to the state £_,.
This mode includes longitudinal fluctuations of the modulus
of the magnetization vector, the direction of which remains
parallel to the main axis of the ellipsoid of quadrupole mo-
ments, deformation of the ellipsoid and its rotation around
the magnetization, i.e. this mode is a longitudinal branch
of the oscillations. It should be noted that in an isotropic
non-Heisenberg magnet with S = 1 in the non- magnet-
ic phase, both branches of excitations coincide (see [26]).
In addition to these excitation branches, another branch as-
sociated with the excited states of the magnetic ion £, — E_;
is realized in the model studied here (see Fig. 2), i.e., the
temperature “thaws” the degree of freedom of the magnet-
ic field ion. Moreover, the excitation branch associated with
the transition of the magnetic ion E|,_, is not a relaxation
one. We study in more detail the excitation spectra of the
non-Heisenberg anisotropic antiferromagnetic at different
ratios of exchange integrals.

4.1
As noted earlier, the FM phase is implemented in the sys-

Excitation spectra in the FM phase at 7 # 0

tem under consideration at J > K and 7 < 7. Let’s consid-
er the solutions of the dispersion equation (6) in this state.
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At nonzero temperatures, this equation defines three branch-
es of spin disturbances, two of which can be conditionally
called “transversal”, since they are associated with vibrations
of a quadrupole ellipsoid, and one “longitudinal”, associ-
ated with an oscillation of the magnetic moment modulus
(quantum spin contraction). The explicit form of the spectra
of these excitations has the form

€l (K) = ~Ep_, - K(K)b(as). ®)
ety = [ Euo + Eoy + 9 (K)(8(a;) + (o)) ]
L1 [EIO —Ep, + J(k)(b(o‘z) - b(“s))T + / ®
2

+4b(0)b (o) (4 (k) - K (k)]

In (8) and (9) El.j — is the difference in the energy levels
of the magnetic ion (see expressions (2)), b(c;) are the end
multipliers determined by the ratios (7).

Given the explicit form of energy levels the magnetic ion
in the FM phase and the terminal multipliers, as well as the
fact that in this case the u-v transformation parameter 6 = 0,
the spectra (8) and (9) can be represented in a more compact

form:
€l (K) = (240 = Ky = K(K))(57). (10)
&5(k) = %(210 ~ Ky = (K))(57) £
|7 (k) —K(k))ZRSZ}2 —(43)2} Tow
"2

+(D—(J(k) -K(k))q§)2

In addition, when obtaining expressions (10) and (11),
it was taken into account that in the FM phase

b(az) = (5%,
as well as

g = 3<(SZ)2>—2.

The temperature dependence of the spectra of elemen-
tary excitations in the FM phase is determined by depend-
ence on the temperature of the average magnetic moment
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<SZ and the components of the quadrupole moment tensor
qg (see expressions (3)—(5)).

Let us consider the behavior of magnon spectra at differ-
ent values of the one-ionic anisotropy constant and at nonze-
ro temperatures. Note that the temperatures in question are
significantly lower than the Curie temperature, which is due
to the fact that the problem is considered in the approxima-
tion of the average.

First of all, let us consider the “longitudinal” branch
of the excitations of s‘ll. As can be seen in Fig. 3 a—d and
Fig. 3 e—h, and also based on formula (10), this branch de-
pends on the wave vector as k2, and this dependence var-
ies slightly with changes in temperature and the constant
of single-ion anisotropy. In addition, there is an energy gap
in the spectrum of longitudinal magnons, which is clearly
independent of the anisotropy <SZ >, qg , q% implicitly depend
on the anisotropy constant:

el (0) =2(s, - K0)<S<’->.

The behavior of the “transversal” branches of excitations

(12)

is more complex. As follows from the correlations (9) and
(11), these two branches are entangled, and the higher the
temperature, the less pronounced this “entanglement”. So,
at a fairly low temperatures and low values of the anisotropy
constant (see Fig. 3 a, b), the branches eé and 83l practically
merge into each other. This behavior is easy to understand
if you pay attention to the behavior of the order parame-
ters <Sz> and qg (see fig. 1 a, b, c). As follows from these
graphs, at very low temperatures t = 0.003 and low anisotro-
pyd / j = 0.1, the expression is

(57) ~tet) o

Then, as follows from (11), the “transversal” branch g,,
at small wave vectors, behaves as follows:

ef=ock2+D/2,

and the second “transversal” branch is dispersionless:

ey =J,-K,—D /2

With the growth of the wave vector, the branches 6%‘
and 83L merge into each other, i.e. at large k, the branch
eé becomes dispersionless, and 83L behaves like a quadratic
parabola.

JETP, Vol. 165, No. 1, 2024
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Fig. 3. Spectra of elementary excitations in the FM phase at T / J = 0.003 (a-d) and 0.3 (e-h) and anisotropy values
D/J =0.1(ae),0.3(b,f),0.5(c,g),1.0(d,h). Solid lines correspond to the “longitudinal” branch of excitations ef /J,
dashed lines correspond to the “transverse” branch sf / J, and the dotted line is a “transverse” branch 83l / J, the exchange
integrals J = 1, K=10.5.
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With an increase in temperature, for example at T/J = 0.3,
as follows from Fig. 1 a, b, c, the value is

(5 (@) o

This leads to the fact that the “transversal” branches be-
gin to “push apart”, and the higher the anisotropy of the
magnet, the more active the pushing occurs. So, for D/J =1,
the “transverse” branch sj becomes dispersionless, and the
branch Sé‘ behaves like k2, moreover, the energy gap of this
branch significantly depends on the value of the anisotropy
constant (see Fig. 3).

4.2 Excitation spectra in the SN phase at T # 0

Let us now consider the behavior of the excitation spectra
in the SN phase at different values of the anisotropy constant
and arbitrary temperatures (excluding the fluctuation region).
It is assumed that J < K, and the u-v conversion parameter
0 in this case is equal to /4. Taking into account that in this
phase <Sz> =0, and q% coincides with the end factor b(a;),
the spectra of all three excitation branches can be represent-

ed as
el () = b(on) % .
x{(Ky = K (K))(K, + K (k) - 2](k))}1/2,
1/2
[§+b(a2)(1<0 —K(k))Jx
e5 (k) = > , (14)
X[E +b(a,)(Ky + K (k) - 2J(k)))
172
[§+ b(ag)(K, - K(k))]x
(=1 (19
X[7 +b(og) (Ko + K (k) = ZJ(k))]

The dependence of the excitation spectra on the temper-
ature is determined by the terminal factors b(c;). As in the
FM phase, there are three branches of the SN phase, one
of which (13) is a “longitudinal” and is related to the oscil-
lation of the length of the magnetic moment vector, and the
other two (14) and (15) are opposite and are related to the
oscillations of a quadrupole ellipsoid.

Figure 4 shows the excitation spectra of a non-Heisen-
berg ferromagnet at different temperatures and different val-
ues of the anisotropy constant. As can be seen in Fig. 4 a—d,
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one of the transverse excitation branches (sél) is dispersion-
less at low temperatures and at arbitrary values of the an-
isotropy constant. However, with increasing temperature
and anisotropy constants, this branch of excitations shows
dependence on the wave vector, although it is not clearly ex-
pressed. This result can be understood if we take into account
that the terminal multiplier b(a;) is determined only by the
excited energy levels Ey, E_,, and therefore differs little from
zero at arbitrary temperatures and values of the anisotropy
constant D. The magnitude of the energy gap in this spec-
trum is determined by the anisotropy constant and increases
significantly with the growth of D (see Fig. 4). The “trans-
versal” branch (sSL) has an energy gap, which significantly
depends on the anisotropy constant. Besides, Fourier images
of the exchange integrals K|,,J, also contribute to the gap.
As can be seen in Fig. 4, this branch of excitations as a func-
tion of the wave vector behaves as Vk?Z + a, and the temper-
ature dependence is determined by the terminal factor b(c, ),
i.e. the energy levels £, and E,.

It should be noted that the “longitudinal” branch of the
excitations 5!1 is gap-free and, as follows from (13), should not
depend on the anisotropy constant. However, as can be seen
in Fig. 4, this branch, although weakly, still depends on an-
isotropy. This dependence is due to the influence of the q%
tensor component of quadrupole moments (in the SN phase
qg = b(a,)), which is associated with the anisotropy constant
through the energy levels E; and E_| of the magnetic ion (2),
i.e. it is associated with the transition of the magnetic ion
from the ground state to the most excited one.

4.3 Excitation spectra in the
AFM phase at 7 # 0

Let’s consider the behavior of excitation spectra in The
AFM phase. In this phase, the exchange constants are con-
nected by the ratio [J| > K, (J < 0) and the system can be di-
vided into two equivalent sublattices. Since the sublattices are
equivalent, it is sufficient to consider the spectra of the- one
sublattice. As before, the spectra of elementary excitations
are determined by the dispersion equation (6), which is valid
at arbitrary temperatures and an arbitrary ratio of the mate-
rial parameters of the system. The solution of equation (6)
gives three branches of the magnon spectra, which have the
form

&) = b(0)x
x{(2-/0 -K,- K(k))(zjo —Ky+ K(k))}l/Z, (16)
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k

Fig. 4. The spectra of elementary excitations in a non-Heisenberg ferromagnet in SN phase at T/K = 0003 (a-d) and 0.4 (e-h)
and the values of D/K = 0.1 (a, ¢), 0.3 (b, f), 0.5 (c, g), 1.0 (d, h). The solid lines correspond to the “longitudinal” branch
of excitations éi"l‘ / K, dashed lines the “transversal” branch .€5l / K, and the dash-dotted “transversal” branch 86L /K, the ex-
change integrals ] = 0.2 K = 1.0.
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Fig. 5. Spectra of elementary excitations of a non-Heisenberg ferromagnet in the AFM phase at T/|J| = 0.003 (a-d) and 0.4
(e-h). D/JJ|=10.1 (a, €), 0.3 (b, ), 0.5 (c, g), 1.0 (d, h). Solid lines correspond to the “longitudinal” excitation branch SH /|,
dashed lines correspond to the “transversal” branch sg‘ / |J |, and dashed lines correspond to the “transversal” branch &g /1,
exchange intervals J = -1.0, K= 0.5.
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s | By B+ 2(0(K)) b0y )b(as) |
eso(k)) == , |£54/B,(17)
o 4) 2 (83 (a)) + 52 (s) (I (k) - K (K))" | 2

where
B= (EfO - Eg_l )2 +
(J(k))2 Ey-Ey,) -
27 (k) - K (k) ( )(b2(a1) b (os))+  (19)
(7(K) = K (£))" (83 (o) + 5% (015) - 2

() b(o) )
“[(2/(0)- K( k>)1< Jo(as)

In the ratios (16), (17) it is taken into account that in the
AFM phase the parameters of the u-v transformation are
equal to 6 = 0, 6 = «/2 for the first and second sublattices,
respectively.

Let’s analyze the received branches of the expectations.
The branch of the s@(k) (see formula (17)) It is a longitudinal
branch of excitations, i.e. it is associated with the transition
of a magnetic ion from the ground state (£,) to the most ex-
cited (£_) and with an oscillation of the length of the mag-
netic moment vector. As follows from Figure (16) and Fig. 5,
this branch of excitations is symmetric with respect to k = 0
and k = n, moreover, the dependence on the wave vector
is quite weak. In addition, this branch practically does not
depend on temperature and the constant of single-ion ani-
sotropy, and the energy gap in the spectrum of longitudinal
excitations is determined by zero Fourier components of ex-
change integrals.

In addition to the “longitudinal” excitation branch, there
are two “transversal” excitation branches in the AFM phase
(see expression (17)). As follows from (17) and Fig. 5, these
branches are “entangled”, and with an increase in temper-
ature and the anisotropy constant, this “entanglement” de-
creases and between the branches 88L and 8;‘, there is a sig-
nificant repulsion. Note that the excitation described by the
88l spectrum is associated with the transition of the magnetic
ion from the basic state (£)) to the first excited state (£).
This branch of excitations has a fairly standard form for the
AFM phase, and the energy gap in the Sg‘ spectrum signifi-
cantly depends on both temperature and the anisotropy con-
stant. As for the 539l branch, it is associated with the transition
of the magnetic ion from the first excited state (£;) to the
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Fig. 6. Phase diagram of a non-Heisenberg anisotropic
magnet with S = 1.

most excited state (£_)). It is noteworthy that this excitation
is not relaxation and has a number of features. Thus, at suf-
ficiently low temperatures, this branch of excitations essen-
tially depends on the wave vector (at low (k ~ 0) and large
(k ~ ) wave vectors), and in the rest of the region of the
wave vector is dispersion-free. With the growth of temper-
ature and anisotropy, this branch becomes more and more
dispersive throughout the entire range of wave vectors.

5. PHASE DIAGRAM

The conducted studies allow us to construct a cross-sec-
tion of the phase diagram of a non-Heisenberg ferromagnet
on the plane (J,K) at different-temperature values. As noted
earlier, such a phase diagram was obtained for the system
under study at T = 0 (see [26, 43]).

As is known, the phase transition line is determined
from the condition of equality of thermodynamic poten-
tials defined in the corresponding phases [13]. Thus, the
phase transition lines FM-SN, SN—AFM, AFM—ON, ON—
FM can be obtained from the condition of equality of free
energies in the corresponding phases. Free energy is equal
to F =-TInZ , where Z is the statistical sum in the corre-
sponding phase, which is determined by the ratio

Z= Y exp(-Ey /T).

M=-1,0,1
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Taking into account the ratios (2), (3)—(5) and (7),
as well as the values of the u-v transformation parameters
in the corresponding phases, numerical analysis allows
us to construct a phase diagram at different values of the sin-
gle-ionic anisotropy constant and free temperatures (exclud-
ing the fluctuation region).

So, from the equality of free energies in the FM and
SN phases, we obtain a phase transition line between them:

Jy = K,. (19)

Comparing the free energies in the phases SN and AFM,
we obtain the phase transition line between them having the
form

J, =0. (20)

If we compare the free energies in the phases of AFM and
ON, we get a phase transition line between them in the form

o] =Ko @1

and from the equality of free energies in the ON and
FM phases we obtain

Jy=0. (22)

As follows from the relations (18)—(21), the phase dia-
gram of a non-Heisenberg anisotropic magnet with S = 1
does not depend on either temperature or the value of the
anisotropy constant and exactly coincides with the phase di-
agram of a similar system obtained earlier for the case T =0
(see [26, 42]). An explicit view of the non-Heisenberg aniso-
tropic magnet phase diagram with S = 1 is shown in Fig. 6.

It should be noted that the lines of phase transitions (18)-
(21) can be determined by analyzing the excitation spectra
in the corresponding phases. Thus, in the FM phase, the
spectrum of longitudinal magnons loses stability (at k = 0)
on the line J, = K|, (see (10)). On the same line, the branch
of “longitudinal” magnons in the SN phase loses stability
(at k = 1) (see (13)). Therefore, the line defined by the ratio
(18) is the FM-SN phase transition line. At k = 0, the spec-
trum of three-dimensional magnons (13) in the SN phase
on the line J, = 0 loses stability. Similarly, in the AFM
phase, the spectrum of (16) “longitudinal” excitations be-
comes unstable at k = © on the line J, =0, i.e. this line
is the SN—AFM phase transition line. The same spectrum
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(16) loses stability at k = 0 on the line ]J0| = |KO|, which in-
dicates an AFM-ON phase transition. Moreover, the insta-
bility of the “longitudinal” branch of the disturbances (10)
at k = m indicates that there is a phase transition on the line
74| = 0] AM—ON.

The analysis of the phase diagram and the excitation
spectra of a non-Heisenberg ferromagnet with anisotropy
of the “light axis” type indicates that the FM-SN phase tran-
sition is a degenerate transition of the first kind.

6. CONCLUSION

The paper analyzes the dependence of the order parame-
ters, free energy density and the spectra of elementary excita-
tions on the temperature and the value of the constant of sin-
gle-ion anisotropy of the type “light axis” of a non-Heisen-
berg anisotropic magnet with S = 1 and dimension d = 3
in the mean field approximation.

Numerical analysis of both vector and tensor order pa-
rameters in ferromagnetic, nematic, antiferromagnetic and
orthogonal-nematic phases makes it possible to determine
the temperature of transition to the paramagnetic state.
In addition, the temperature dependence of the components
of the quadrupole moment tensor qg (see Fig.l a,..., 1) in-
dicates that at T > TQ, i.e. in the paramagnetic phase, the
rotational symmetry of the Qaﬁ tensor is also violated, which
is due to the presence of a single-depth anisotropy of the
type “light axis”. Note that the transition temperatures
significantly increase with the growth of the one-ion con-
stant anisotropies of the type “light axis” (see Fig. 1), which
is quite expected, since a large light-axial anisotropy prevents
the destruction of the magnetic order by thermal fluctua-
tions. Also, in the mean field approximation, we carried out
an analytical assessment of the temperatures of transitions
to a more symmetrical phase from both phases with a vec-
tor parameter of order (FM, AFM) and phases characterized
by tensor parameters (SN and ON). These estimates show
that the transition temperatures significantly depend on ten-
sor order parameters and biquadratic exchange interaction.

Of particular interest is the dependence of the spectra
of elementary excitations of a non- Heisenberg anisotrop-
ic ferromagnetic with a spin of a magnetic ion unit on both
temperature and the anisotropy constant. First of all, we note
that, unlike the previously considered case, T = 0 [43], in the
case under consideration, an additional branch of excitations
arises associated with the transition of the magnetic ion from
the first excited state of the magnetic ion (£)) to the most
excited (E_,), and this branch is not relaxation. Thus, in the
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non-Heisenberg magnetism at arbitrary temperatures (below
the critical temperature), three branches of elementary dis-
turbances are realized: two of which are transversal and are
associated with the precession motion of a quadrupole ellip-
soid, and one is transversal, associated with a change in the
length of the magnetic moment vector. The behavior of the
excitation spectra in dipole and tensor phases is fundamen-
tally different. Thus, in the FM and AFM phases, the trans-
versal branches of the excitation at low values of the light-ax-
ial anisotropy constant and sufficiently low temperatures are
strongly hybridized (see Fig. 3 and 5) and significantly de-
pend on the magnitude of the anisotropy. With an increase
in the anisotropy constant, the “transversal” branches begin
to push apart, and at high values of the single-ion anisotropy
constant, the transverse branches associated with the transi-
tion of the magnetic ion E,_; become dispersionless. In the
SN phase, the “transversal” branches of elementary distur-
bances are not hybridized, which is due to the equality of the
average value of the magnetic moment to zero (at the node).
In addition, in this phase, taking into account single-ion an-
isotropy removes the degeneration of the excitation branches,
as is observed, for example, in an isotropic spin nematic [26].

The analysis of the free energy density and the spectra
of “longitudinal” excitations makes it possible to construct
a phase diagram of the system under study at arbitrary tem-
peratures and arbitrary values of the single-ionic anisotro-
py constant. The result of these studies is shown in Fig. 6.
As shown in this figure, the system retains the same phase
states that are realized at T = (. In addition, the phase tran-
sition lines are similar to the case T = 0, i.e. they do not
depend on either temperature or the value of the anisotropy
constant. Thus, the phase diagram we obtained coincided
with the phase diagram of the system under study at T =0
[53]. In addition, the phase transition in the case under con-
sideration is a degenerate phase transition of the first kind,
as well as at T = 0. However, this does not mean at all that
temperature and single-ion anisotropy do not affect the
properties of the spin nematic. As shown in this paper, tem-
perature and single-ion anisotropy fundamentally change the
dynamic properties of the system.

It should also be noted that the analysis of the spectra
of elementary disturbances in the ON-phase has not been
carried out in this work. This is the subject of a separate review.
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