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1. INTRODUCTION
One of the possible mechanisms for generating a spin cur‑

rent without using magnetic materials or a magnetic field is the 
spin Hall effect. The cause of this effect is the spin‑orbit cou‑
pling [1–9]. The spin‑orbit coupling leads to the fact that the 
flow of an electric current in a non- magnetic (“normal”) met‑
al in the absence of an external magnetic field causes the ap‑
pearance of transverse pure spin current, which is not accom‑
panied by the transfer of an electric charge [3, 10-15]. In the 
case of the reverse spin Hall effect, the flow of a spin current 
in a normal metal causes the occurrence of a transverse elec‑
tric current. These effects are most noticeable in metals with 
a strong spin‑orbit coupling, such as Pt, Ta, W. If such metals 
are adjacent to layers of magnetic materials as part of a planar 
nanostructure, then during electric current flows in the nano‑
structure the change in the magnetic state of the layers caused 
by the transfer of the spin moment is possible [9, 16-21]. The 
study of the relationship of spin and charge currents in normal 
metals with strong spin‑orbit coupling, as well as the pro‑
cesses of spin moment transfer in nanostructures containing 
metals with various types of magnetic ordering, is the subject 

of the newest branch of spintronics, called spinorbitronics 
[16-19, 22]. 

To create spinorbitronics devices, it is extremely impor‑
tant to study the relationship between spin and charge currents 
in normal metals. In 2007. Dyakonov theoretically showed [23] 
that in two-dimensional normal metals with strong spin‑orbit 
coupling, the connection of spin and charge currents can be de‑
tected using galvanomagnetic experiments. The flowing electric 
current due to the spin‑orbit coupling causes a purely spin cur‑
rent, which leads to the accumulation of nonequilibrium spin 
density near the edges of the two-dimensional sample. The ac‑
cumulated spin density diffuses into the depths of the metal, 
which causes a pure spin current flowing from the faces of the 
sample. The external magnetic field leads to the suppression 
of the nonequilibrium spin density, as a result of which electri‑
cal resistance increases and reaches the value of the electrical 
resistance of the material, in which the presence of spin‑or‑
bit coupling can be neglected. This type of magnetoresistance, 
which arises due to the manifestation of a combination of the 
direct and inverse spin Hall effect, as well as the Hanle effect 
(the effect of damping of nonequilibrium spin density during 
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diffusion under conditions of simultaneous precession in a mag‑
netic field), was named by Dyakonov as magnetoresistance due 
to edge spin accumulation.

This theory has been confirmed in experiments with thin 
films of normal metals with strong spin‑orbit coupling [24–26]. 
The authors have shown that the external magnetic field ap‑
plied along the direction of the electric current causes an in‑
crease in the electrical resistance of the film. The longitudinal 
magnetoresistance of a thin metal film with a strong spin‑orbit 
coupling, arising from the suppression of nonequilibrium spin 
density near the film surfaces, was named by the authors Han‑
le magnetoresistance by analogy with the well-known magne‑
to-optics effect.

In the work carried out to date on the study of Hanle mag‑
netoresistance, the question of the role of conductivity electron 
scattering with spin flip on the film surfaces has not been investi‑
gated. However, it can be expected that it is the surface scattering 
with a spin flip that is a factor significantly affecting the suppres‑
sion of spin accumulation near the surface due to the spin‑or‑
bit coupling. In this paper, a theory of dimensional effects due 
to spin‑orbit coupling in the magnetoresistance of thin films 
of normal metals is constructed, taking into account the surface 
scattering of electrons with a spin flip. Within the framework 
of the constructed theory, the analysis of the results of an ex‑
perimental study of the Hanle magnetoresistance of β-tantalum 
thin films was carried out. 

2. THE THEORY OF DIMENSIONAL EFFECTS 
IN MAGNETORESISTANCE, DUE TO THE 

SPIN‑ORBIT COUPLING
To describe the electron spin transport in a metal with 

a strong spin‑orbit coupling, we use the equations for the density 
of conduction electrons N, spin density S, electron flux density 
I and spin current density J, formulated in [27, 28]. In these 
equations, the electron flux density I is a vector quantity, where‑
as the density of the spin current  J  is a second-rank tensor.

Let E and B be the electric and magnetic fields acting in the 
metal, with respect to which we assume that they are homoge‑
neous in space and independent of time. Below, we will limit 
ourselves to considering the case when the vectors E and B are 
collinear and parallel to the X axis lying in the plane of the 
film occupying the region − ≤ ≤ +/ 2 / 2L z L , where L is the 
thickness of the film. In the considered geometry, when cur‑
rents I and J flow, the system remains electrically neutral and 
then ≡ 0N N , where 0N  is the equilibrium value of the electron 
density.

Let’s denote the relaxation time of the electron pulse in the 
process of their orbital motion as a τO. The relaxation time of the 
spin of the conduction electrons is denoted as τS. To character‑
ize the intensity of the processes of “skew” scattering of con‑
duction electrons due to the presence of spin‑orbit coupling, 
we introduce, following the work [27, 28], the parameter τSO,  
which determines the frequency of skew scattering processes 

τ1 / SO . Parameter ξ τ τ= /O SO  characterizes the relative in‑
tensity of the skew scattering velocity of conduction electrons 
and can be of any sign, whereas its magnitude is  ξ  1. The 
parameters of τO and τS  characterize the relaxation of the mo‑
mentum and spin of the electron in the film and may, generally 
speaking, depend on the thickness of the film L.

When describing the electron flow and spin flow, we con‑
sider the Ωτ  1O  and Ω τ  1C O , where Ω γ= B  — precession  
frequency, Ω = /C ee B m c — cyclotron frequency, γ µ = 2 /  — 
gyromagnetic ratio, = Bgµ µ /2 — magnetic moment of the elec‑
tron, whose Lande factor is g, µB  — Bohr magneton, em  — effec‑
tive electron mass, e — electron charge. As a result, the system 
of equations [27, 28] for vector I and tensor J takes the form 

	 0= ,
e

σ
− ξ ⋅ ⋅I E Jє 	 (1)

	 0
0 0

0
= ,D

N e r
σ ∂

⊗ − ⊗ δ − ξ ⋅
∂

E S S IJ є 	 (2)

	 1 = 0.
S

∂  ⋅ + γ δ × + δ ∂ τ
S B S

r
J 	 (3)

Here σ τ2
0 0= /O eN e m  is the specific conductivity of the 

Degenerate electron gas in the absence of spin‑orbit coupling, 
2

0 = F OD v τ /3 is the corresponding σ0 coefficient of electron dif‑
fusion, Fv  is the Fermi velocity. The value 0=δ −S S S  is the 
deviation of the spin density S from its locally equilibrium value 

0 = /−χ µS B , where χ is the susceptibility of the Pauli electron 
gas. The terms «⊗», «⋅» and «⋅ ⋅» are used to denote mathematical 
operations of the tensor, scalar and double scalar product of vec‑
tors and tensors, respectively, the symbol є denotes an absolutely 
antisymmetric unit tensor of rank 3.

Equation (2) clearly describes a phenomenon called the 
spin Hall effect: the flow of conduction electrons I, appearing 
in the last term of the right side of equation (2), induces spin 
current J  by a spin‑orbit coupling. Accordingly, equation (1) 
describes the inverse spin Hall effect: the spin current J, in the 
presence of spin‑orbit coupling, induces an electric current I. 
In the literature devoted to the description of the Hall spin ef‑
fect, the term spin Hall angle is often used. The spin Hall angle, 
denoted as ΘSH , is associated with the parameter introduced 
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by ξ relation = tg SHξ Θ . Since it is always Θ  1SH , the pa‑
rameter is ξ Θ SH .

The solution of the system of equations (1), (2) relative 
to currents I and J can be written in the form

	 = ,D
e

 σ ∂− ξ × δ ∂ 
I E S

r
	 (4)

	
0

= ,D
e N e

χσ ∂ σ− ⊗ − ⊗ δ − ξ ⋅
µ ∂

E B S E
r

J є 	 (5)

where ( )σ σ + ξ2
0= / 1 2  and ( )+ ξ2

0= / 1 2D D  are the con‑
ductivity and diffusion coefficient of  the unlimited metal 
renormalized by the spin‑orbit coupling. In obtaining expres‑
sion (5) for J, we neglected the difference between the tensor 

⋅ ⋅ ⋅Jє є  from J⋅ ⋅ ⋅є є , which is insignificant for the purposes 
of this work.

In the considered configuration of the fields E and B rela‑
tive to the film surface, both the flux of conduction electrons 
I and the spin current J can depend on only one spatial coor‑
dinate z. This allows you to write the vector ( )zI  in the form 
( ) = ( )x xz I zI e , where xe  is a unit vector specifying the direc‑

tion of the X axis, and the only nonzero component of the flux 
density ( )xI z  is determined by equation

	 σ ∂+ ξ δ
∂

( ) = .x yI z E D S
e z

	 (6)

It clearly follows from expression (6) that the accumulation 
of the spin moment of electrons close to the film surfaces caused 
by the spin‑orbit coupling, leading to the dependence of the 
nonequilibrium spin density δ yS  on the z coordinate, has as a 
direct consequence a dependence of the density of the electric 
current flowing in the film ( ) = ( )xj z eI z  on the z coordinate 
as well.

In order to make the picture of the flow of the spin cur‑
rentJ more visual, we introduce into consideration, following the 
work [27], the vectors iP  of polarization of spin currents flowing 
in the directions i = x, y, z, which are given by the unit vectors ie .  
By definition, =i i ⋅P e J . Setting three vectors iP  is completely 
equivalent to specifying the tensor J. In the coordinate system 
we have chosen from the expression (5) we get

	
0

= ,x xEB
e N

χσ−
µ

P e 	 (7)

	 = ,y zE
e
σ

−ξP e 	 (8)

	 = .z yD E
z e

∂ σ
− δ + ξ

∂
P S e 	 (9)

It follows from expressions (7)–(9) that the vectors xP  and  yP ,  
which define the polarization of spin currents flowing in the 
X and Y directions, do not change their shape and direction with 
a change in the z coordinate. On the contrary, the polarization 
vector zP  of the spin current flowing along the Z direction de‑
pends on the coordinate z in the most significant way due to the 
dependence of the nonequilibrium spin density δS. Using the 
vector zP  equation (3) can be written as follows:

	 1 = 0.z
Sz

∂  + γ δ × + δ ∂ τ
P S B S 	 (10)

To find the nonequilibrium density ( )zδS  from equations (9), 
(10) it is necessary to set boundary conditions connecting the vec
tors ( )z zP  and ( )zδS  at the boundaries of the film = / 2.z L±  
A detailed derivation of such boundary conditions is presented 
in [29, 30]. To characterize the spin scattering of conduction 
electrons at the film boundaries, we introduce a phenomenolog‑
ical parameter ε, which makes sense of the probability of elec‑
tron scattering with a spin flip when an electron is reflected from 
the surface of the film. Then the required boundary conditions 
can be written in the form

	 ( ) ( )/ 2 = / 2 .
1 2

F
z

v
L L

ε± ± δ ±
− ε

P S 	 (11)

The solution of the equations (9), (10) with boundary con‑
ditions (11) can be written as follows

	 = 0, = , = ,Re Imx y zS S SS Sδ δ δ −δ δ 	 (12)

where

	
στ ζκδ ξ

κ λκ + ψ λκ
sh= .

ch sh
S

S

E
S

eL
	 (13)

When writing expression (13) for δS  we  introduced 
dimensionless variables ζ = / Sz L ,  β γτ= S B  and 
κ + β= 1 i , > 0Reκ , as well as parameters λ = / 2 SL L  and 

( ) ( )ψ τ ε − ε= / 2 / 1S F Sv L , in  which τ=S SL D  is  the 
spin-diffusion length calculated taking into account the spin‑or‑
bit coupling.

The formulas (6), (12), (13) show that the spin‑orbit cou‑
pling leads to an increase in the electric current density near 
the boundaries of the film compared with the value of the cur‑
rent density in its depth. Integrating the expression for j over 
z from − / 2L  to + / 2L , we find the total electric current flowing 
in the film, which allows us to write the following expression 
for the specific electrical resistance ρ ( )L B  of a film of thickness 
L in a magnetic field B:
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12 1( ) = 1 .Re cthL B

− ξρ ρ + λ κ λκ + ψ 
	 (14)

Here −ρ σ 1=  is the specific electrical resistivity of the film 
material, calculated taking into account the spin‑orbit coupling 
of electrons, but without taking into account the surface spin 
accumulation.

In the absence of a magnetic field , the dimensional effect 
in the electrical resistance of thin metal layers due to spin‑orbit 
coupling will be described by the value ρ ≡ ρ( = 0)L LB . The ex‑
pression for ρL assuming the smallness of the parameter ξ 

2 1 
takes the form

	
 ξ λ ρ − ρ + ψ λ λ 

2 th= 1 .
1 thL 	 (15)

It follows from expression (15) that the scattering of con‑
duction electrons with a spin flip on the surface of the film, 
described by the parameter ψ, leads to a decrease in the size-de‑
pendent of the electrical resistance of the film ρL. This decrease 
is described by the multiplier ( )2 / 1 thξ + ψ λ  in the right part 
of expression (15). If condition ψ  1, is fulfilled, then the effect 
of spin-flip scattering on the surface can be neglected.

We introduce into consideration the relative Hanle mag‑
netoresistance L by the formula 

	 ( ) ( )ρ − ρ
ρ


( = 0)

= .
( = 0)

L L
L

L

B B
B

B
	 (16)

Due to the fulfillment of the condition ξ 

2 1 of (14)–(16) 
for the Hanle magnetoresistance, we obtain

	
( ) ξ λ ×

+ ψ λ λ
  λκ + ψ λ× −  κ λ + ψ λκ κ  


2 th=

1 th
th 1 th1 .Re th 1 th /

L B
	 (17)

Defined by the expression (17) relative magnetoresistance 
( )L B  is a positively defined monotonically increasing lim‑

ited function of the field B. With an increase in the magnetic 
field at values B significantly exceeding the value γτ= 1 /S SB ,  
the value ( )L B  reaches its maximum possible value 

( )≡  ( )max
L L SB B . It follows from (17) that

	 λξ
λ

( ) 2 th= ,max
L L 	 (18)

where 

	 ξξ
+ ψ λ

= .
1 thL 	 (19)

Magnetoresistance ( )max
L  is a function of thickness L and 

parametrically depends on the probability of surface scattering 
with spin flip ε. Dependence ( )max

L  on the thickness is given 
by the function th /λ λ  , varying from one to zero with an in‑
crease of  λ = / 2 SL L , whereas the value of ( )max

L  is determined 
by the value of the newly introduced parameter ξL. The parame‑
ter ξL, proportional to ξ and dependent on ε, makes sense of the 
effective spin Hall angle.

The scattering of electrons on a surface with a spin flip re‑
duces the value of  ξL  and thus the magnitude of the magnetore‑
sistance ( )max

L . For any values of the probability ε of scattering 
on a surface with a spin flip ξ ≤ ξL . If the condition ψ  1, 
is fulfilled, then the effect of surface scattering with a spin flip 
on the magnetoresistance( )max

L  can be ignored. Condition
ψ  1 can be represented as ε τ τ /O S .

Fig. 1 shows the behavior of  ( )L B  as a function of the var‑
iables β and λ at two different values of the parameter ψ.

Fig. 1 shows that for all values of β and λ, the surface scatter‑
ing of electrons with a spin flip leads to a decrease in the Hanle 
magnetoresistance. The main contribution to the change of 

( )L B  under the action of surface scattering with a spin flip 
comes from a decrease in the value of ξL  compared with ξ .

3. EXPERIMENTAL TECHNIQUES
β-tantalum films with a thickness of L = 3, 4, 5, 6.5, 8, 9.5, 
11, 14, 30, 57 nm were obtained by the magnetron sputtering 
method at a power of 100 W on glass substrates. The base 
pressure of the residual gases in the deposition chamber was 

−⋅ 75 10  Pa. The pressure of the argon working gas during dep‑
osition Ta was 0.1 Pa.

Fig. 1. Behavior of  ( )L B  depending on  the value 
λ = / 2 SL L  and β γτ= S B  in the absence of electron 
scattering on a surface with a spin flip, ψ  = 0 (red sur‑
face), and in the presence of surface scattering with a spin 
flip, ψ  = 1 (blue surface)
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Using optical photolithography, micro- objects in the form 
of Hall bridges were formed from tantalum films (Fig. 2). The 
width of the microstrips w was 200 microns, the length was 2700 
microns, and the distance Ul  between potential contacts was 2200 
microns. The copper contact pads are formed using the “lift-off” 
procedure. The electrical resistance of micro-objects was meas‑
ured in the temperature range 93 ÷ 343K at an installation based 
on an electric magnet, a pumping cryostat and a temperature con‑
troller using a four-contact method. The experimental installation 
makes it possible to vary the angle α between the direction of the 
current j flowing along the microstrip and the direction of the 
magnetic field H applied in the plane of the film.

The magnetic field when measuring the electrical resistance 
of the Hall bridges varied within ±20 kOe. The values of the 
electric current flowing along the Ta microstrips of various 
thicknesses were not more than 1 mA in order to avoid heating 
the sample during measurement. The current density did not 
exceed ⋅ 81.9 10  А/m2.

The microstructure was studied using transmission elec‑
tron microscopy and X-ray diffraction in Ka Co radiation. The 
atomic force microscopy method was used to study the surface 
of thin films.

4. STUDY OF THE MICROSTRUCTURE AND 
SURFACES OF TANTALUM FILMS

Thin Ta films usually have two structure phases: α-Ta with 
a body-centered cubic (BCC) structure and β-Ta with a tetrag‑
onal crystal lattice [31] and an order of magnitude higher elec‑
trical resistivity [32]. Due to the relatively large value of the spin 
Hall angle, it is β-Ta that represents an interest for creating na‑
nostructures, the magnetic state of which can be changed using 
an electric current. 

We used magnetron sputtering modes in which the β-phase 
prevails in the Ta layer [33]. Figure 3 shows an X- ray diffraction 
pattern obtained from a 57 nm thick Ta film. Reflexes from the 
(002) and (004) planes are visible of the tetragonal structure 
of β-tantalum and another weak peak that can relate to planes 
(202), β-Ta or (110), α-Ta.

The appearance of multiple peaks from the planes (002) and 
the absence of other reflexes of the tetragonal structure is prob‑
ably a consequence of the texture of {002} in the Ta film.

The results of the transmission electron microscopy study 
are shown in Fig. 4.

On  the electron diffraction pattern obtained from 
a 57 nm thick Ta film (Fig. 4a), all the observed Debye rings 
correspond to families of planes of the tetragonal structure 
of β-tantalum. In Fig. 4 b a dark-field image obtained in a re‑
flex corresponding to a family of planes is shown, {421} or {222}. 
Sequential dark-field images were obtained by incrementally 
shifting the masking aperture by a small distance along the De‑
bye ring. The images showed grains sequentially located next 
to each other. Many neighboring grains are very poorly oriented 
relative to each other. In the light-field image (Fig. 4c), individ‑
ual crystals are visible with contrast in the form of dark and light 
parallel stripes, which is typical for twin defects of the structure. 
The grain size varies between 6.5 ÷ 25 nm.

The electron diffraction pattern obtained for the Ta film 
with a thickness of 8 nm (Fig. 4 d) shows diffused Debye rings 
characteristic of a pseudo-amorphous misoriented fine-crys‑
talline phase. Due to the large width of the rings, the inter‑
planar distances cannot be calculated accurately. According 
to the position of the middle, the Debye rings belong to the 
tetragonal structure of β-Ta. Individual point reflexes from 
larger crystallites are visible on the rings. In the dark-field 
image (Fig. 4 e) in reflex, {421}, {222} individual crystallites 

Fig. 2. Schematic representation of a micro-object de‑
signed for measuring electrical resistance by the four-con‑
tact method 

Fig. 3. X-ray diffraction pattern of a 57 nm thick tanta‑
lum film
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of the appropriate orientation are visible. The grain size varies 
between 0.6 ÷ 2 nm. 

Thus, a pseudo amorphous beta-Ta phase is formed in tan‑
talum films with a thickness of 8 nm. When the film thickness 
increases to 57 nm, larger crystallites appear and the grain size 
increases tenfold. The inter-grain boundaries are small-angle. 
There are packaging defects in the form of double borders. 

Fig. 5. Surface images (a, c) and surface profiles (b, d) 
of 30 and 8 nm thick Ta films 

Characteristic images of the β-Ta film surface with thick‑
nesses of 8 and 30 nm obtained by atomic force microscopy are 
shown in Fig. 5. 

With a film thickness of L = 30 nm, the average grain size 
is 17 nm, which is consistent with the crystallite size estimate 
performed using electron microscopy. When the film thickness 
is L = 8 nm in the surface image, clusters ranging in size from 
5 to 25 nm are visible, combining grains whose size is beyond 
the device’s resolution.

Fig. 5 b and Fig. 5 d show the surface profiles of β-Ta films 
with a thickness of 30 and 8 nm. It can be seen that the surface 
roughness increases as the film thickness increases.

Fig. 6 shows the dependence of the roughness parameter 
of the root mean square (RMS) on the thickness of the β-Ta film. 

The RMS value was estimated at the site in the size of 1×1 mm2, 
averaging was carried out by 3 to 5 measurements in different 

sections of the sample. Films with a thickness of L ≤ 8 nm  
have very low roughness. As the film thickness increases, the 
value of RMS increases significantly.

5. GALVANOMAGNETIC PROPERTIES TANTALUM 
NANOLAYERS

Fig. 7 shows the dependence of the specific electrical resist‑
ance of β-Ta films on the thickness at T = 93 K in the absence 
of an external magnetic field.

At  > 30L  nm, the electrical resistivity practically does not 
depend on the thickness of the film and is 1.6 µOhm ⋅m. For 

< 10L  with a decrease in the film thickness, the electrical resis‑
tivity increases sharply, reaching a value of about 3.2 µOhm ⋅m  
for a film with = 3L  nm. The experimental results obtained are 
in good agreement with the data presented in the literature for 
β-Ta films of different thicknesses [34, 35].

According to structural studies, the average size of crystal‑
lites decreases significantly with the decreasing film thickness. 
A sharp increase in electrical resistance in the range of small 
thicknesses may be due to a decrease in the mean free path of 
metal conduction electrons due to a decrease in the size of the 
crystallites and an increase in the number of grain boundaries. 
An additional contribution to the resistance can be made by de‑
fects in the crystal lattice, the density of which is higher for metal 
films of small thickness in comparison with thicker films [36]. 

Fig. 4. Electron diffraction patterns (a, d), dark-field (b, e) and light-field (c, f) images obtained for tantalum films with 
a thickness of 57 nm and 8 nm. The dark-field images were obtained in the reflex {421}, {222}
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The decrease in the size of the crystallites with a decrease 
in the film thickness is well consistent with the temperature 
coefficient of resistance (TCR) changes (Fig. 8).

For films in the thickness range of 3 ÷ 57 nm , a negative 
temperature coefficient of resistance was observed (see Fig. 8), 
characteristic of highly disordered systems [37, 38]. In this case, 
a decrease in temperature is accompanied by an increase in the 
specific electrical resistivity of the sample [39] (Fig. 8, insert).

An increase in the absolute value of TCR is observed with 
a decrease in film thickness and an increase in electrical resist‑
ance, which is associated with an increase in disorder in thin‑
ner layers of β-Ta. The charater of change in the dependence 
of TCR on L is in good agreement with Moya’s rule of thumb 
[38].

The field dependences of the electrical resistance of Ta films 
of different thicknesses were measured in a magnetic field ap‑
plied in the plane of the film parallel and perpendicular to the 
direction of the current. The field varied from 20 to -20 and back 
to 20 kOe. The measurements were carried out at various fixed 
temperatures in the range from 93 to 343 K. Figure 9 shows 
the field dependences of the electrical resistivity ( )ρL H  for 
a 5 nm thick Ta film.

With the collinearity of the current direction and the applied 
magnetic field (α = 0◦), the resistance increases with an increase 
in the applied field. If the field is perpendicular to the direction 
of the current (α = 90◦), then the changes in electrical resist‑
ance are within the measurement error. In our experiments, the 
non-zero longitudinal magnetoresistance was found for sam‑
ples of Ta films with thicknesses from 3 to 11 nm. Similar field 

dependences of resistance were previously obtained for Pt [24-
26] and β-Ta films [24].
Based on  the results of  measuring the field dependences 
of the resistivity of Ta films, the Hanle magnetoresistance 
(longitudinal magnetoresistance) ( )L H  was estimated. 
In our experiments, the maximum value of the applied mag‑
netic field was 20 kOe, respectively, the maximum obtained 
value of the longitudinal magnetoresistance ( )= 20 kOeL H  
was estimated for = 20H  kOe. 

The field dependences of the longitudinal magnetoresistance 
of the β-Ta film with a thickness of 5 nm were measured at vari‑
ous fixed temperatures in the range 93 ÷ 343K. Figure 10 shows 
the temperature dependence of  ( )= 20L H kOe .

The maximum magnetoresistance of the film increases 
monotonously with the decreasing temperature. In a similar 

Fig. 5. Surface images (a, c) and surface profiles (b, d) of 
30 and 8 nm thick Ta films

Fig. 6. Shows the dependence of the roughness parameter 
of the root mean square (RMS) on the thickness of the 
β‑Ta film.

Fig. 7. Dependence of  specific electrical resistivity 
of β-Ta  ρL films on the thickness at  = 93T  K in the field 
H = 0. The experimental points are connected by a curve 
for ease of perception
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temperature range, similar dependences were observed for 
Pt films in the works [24, 25]. A possible explanation for the 
increase in longitudinal magnetoresistance with a decrease 
in temperature is an increase in the of the spin relaxation and, 
accordingly, an increase in the spin diffusion length. 

The field dependences of  the magnetoresistance 
of β-Ta films were measured at various fixed angles α in the 
range from -60◦ to 240◦. Fig. 11 shows the angular dependenc‑
es of  ( )= 20 ,L H αkOe  for Ta films with a thickness of 5 and 
8 nm at T = 103K.

In both cases, the experimental points are close to the 
curve corresponding to  the approximating function 

( ) 2= 20 , cosL H α αkOe . With the perpendicular orien‑
tation of the current direction and the applied field (α = 90◦), 
magnetoresistance is not observed. The highest magnetore‑
sistance ( )= 20L H kOe  was obtained with collinear orien‑
tation of the current and field directions (α = 0 and 180◦).

Fig. 12 shows the dependence of  ( )= 20L H kOe  on the 
thickness of Ta films at a temperature of 93 K. The highest 
value of  ( )= 20L H kOe  was observed for β-Ta films with 
a thickness of 5 nm.

6. SPIN DIFFUSION LENGTH,  
SPIN RELAXATION TIME AND SPIN  

HALL ANGLE IN TANTALUM  
NANOLAYERS 

We will analyze the experimental data obtained using the 
theory of dimensional effects in Hanle magnetoresistance pre‑
sented in section 2.

To analyze the experimental dependences of the Hanle mag‑
netoresistance, we use the expression (17). The surface scat‑
tering of electrons with a spin flip leads, firstly, to a decrease 
in the magnitude of the Hanle magnetoresistance and, sec‑
ondly, to a change in the shape of the functional dependence 
of the magnetoresistance on the magnetic field. The decrease 
in the magnitude of the Hanle magnetoresistance is described 
by the first multiplier in the right part of the expression (17). The 
change in the shape of the magnetic resistance curve ( )L B  
is described depending on the parameter ψ of the third factor 
enclosed in square brackets. As the numerical analysis of the 
expression (17) shows, the effect of surface scattering with 
a spin flip on the shape of the curve ( )L B  in the case of inter‑
est to us when ε ≤ 1, can be ignored.

Taking into account the above, the expression (17) can 
be written in the form

	 ( ) 2 th th1 ,Re thL LB
 λ λκ≈ ξ − λ κ λ 

 	 (20)

where ξL  is a parameter defined by the expression (19), ex‑
pressed in  terms of  the spin Hall angle ξ  and depending 
on the probability of surface scattering with a spin flip ε and 
the thickness of the film L. We will use formula (20) to de‑
scribe experimentally observed dimensional effects in the 
Hanle magnetoresistance, considering ξL  to be a variable 
parameter whose value must be determined for each sample 
of a given thickness.

From the results of the section 5, shown in Fig. 7, it follows that 
in the absence of a magnetic field, the specific electrical resistivity  

Fig. 8. The dependence of the temperature coefficient 
of  resistance TCR on  the thickness b-Ta  in  the field 
H = 0. On the insert the dependence ( )ρL T  for a film 
is b-Ta with a thickness of 3 nm in the field H = 0. The 
experimental points are connected by a curve for the con‑
venience of perceiving

Fig. 9. Field dependences of the resistivity of the Ta film 
sample with a thickness of 5 nm at a temperature of 93 K. 
Solid circles and triangles measuring -20 to 20 kOe, un‑
filled circles and triangles measuring from 20 to -20 kOe
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ρL of thin films of tantalum varies significantly with thickness. At 
> 30L  nm, electrical resistivity ρL is practically independent 

of the film thickness, taking the value ( )ρ = 1.6bulk  µOhm ⋅m, 
typical for massive β-Ta samples. For thicknesses L < 10 nm, 
electrical resistance ρL increases significantly, reaching a value 
of about 3.2 µOhm ⋅m for films with L = 3 nm. In fact, the value 
of the ratio ( )ρ ρ= / bulk

L Lr  can change twice.
The results of the investigation of the structure of β-Ta films 

presented in section 5 clearly indicate that the above-described 
behavior of ρL correlates with a change in the microcrystalline 
structure of the films. According to structural studies, the av‑
erage size of crystallites decreases significantly with a decrease 
in film thickness. A decrease in the size of the crystallites leads 

to an increase in the area of the intergranular boundaries and, 
as a result, to an increase in the relaxation rate of the pulse 
of conduction electrons τ1 / O  in the film. An additional con‑
tribution to the relaxation rate of  τ1 / O  may be made by de‑
fects in the crystal lattice, the density of which is higher in films 
of metals of small thickness. Finally, the scattering of conduc‑
tion electrons on the surface, which is responsible for the ex‑
istence of the well-known classical dimensional effect in the 
electrical resistance of thin films, also makes a significant con‑
tribution to the dependence of τ1 / O on L [40].

It is natural to assume that the above-mentioned reasons 
for the possible dependence of the relaxation time of the pulse 
τO in the film on its thickness L determine the experimentally 
observed dependence on the thickness of the relative electrical 
resistance ( )ρ ρ= / bulk

L Lr . Changes in electrical resistance 
caused by the accumulation of spin density near the bounda‑
ries of the sample, due to the smallness of the parameter ξ 

2 1 
make a small contribution to the dependence of the value of ρL 
on L. Neglecting these small changes, we write down the rela‑
tionship between the specific electrical resistivity of the film ρL 
and the effective relaxation time of the pulse ( )τO L , depending 
on the thickness L, in the form ( )ρ τ2

0= /L e Om N e L . Writ‑
ing down the specific electrical resistance of a massive metal as 

( ) ( )ρ τ2
0= / bulkbulk

e Om N e , where ( )τ bulk
O  is the pulse relaxation 

time in a solid metal, it is possible to put the dependence of 
( )τO L  by the formula 

	 ( ) ( )τ τ= / .bulk
O O LL r 	 (21)

In this ratio, the value of  ( )τ bulk
O  is a parameter of the theory, 

whereas the value of rL is determined from the experiment.

Fig. 10. Temperature dependence of longitudinal mag‑
netoresistance for a  β-tantalum film with a  thick‑
ness of 5 nm. The experimental points are connected 
by a curve for ease of perception

Fig. 11. Angular dependence of the magnetoresistance 
of β-tantalum films with thicknesses of 5 and 8 nm at 
T = 103 K. Circles and triangles are experimental points 
obtained for films with a thickness of 5 and 8 nm, respec‑
tively. Curves are the result is an approximation

Fig. 12. Dependence of  the Hanle magnetoresistance 
on  the β-Ta film thickness at T = 93 K. The symbols 
correspond to the experimental values. The experimen‑
tal points are connected by a curve for the convenience 
of perception
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Assuming that spin relaxation in tantalum films is due 
to a strong spin-orbit coupling, we will assume that the depend‑
ence on L of the spin relaxation time ( )τS L  has the same form 
as the dependence (21) for ( )τO L : 

	 ( ) ( )τ τ= / .bulk
S S LL r 	 (22)

The value of  ( )τ bulk
S  appearing in (22) is a parameter of the 

theory, by analogy with ( )τ bulk
O .

As a consequence, from the ratios (21) and (22), it is as‑
sumed that the length of the SL  spin diffusion in the film will 
also depend on the thickness: 

	 ( ) ( )= / ,bulk
S S LL L L r 	 (23)

where ( )bulk
SL  is the spin diffusion length in a massive metal. 

Using expression (20), in which the dependences ( )τS L  and 
( )SL L  are given by the relations (22) and (23), we have de‑

scribed the experimental dependences of the Hanle magnetore‑
sistance ( )L H  on the external magnetic field H for β-tantalum 
films of various thicknesses. The independent variable parame‑
ters were ξL, ( )τ bulk

S  and ( )bulk
SL . Figure 13 shows the most typical 

experimental and theoretical results the dependence of the Han‑
le magnetoresistance on the external magnetic field for samples 
with thicknesses L = 3, 5 and 8 nm. 

Experimental dependences of  ( )L H  for the entire sample 
set (L = 3, 4, 5, 6.5, 8, 9.5, 11 nm) can be described at values 

( ) = 4.34bulk
SL  nm and ( ) −τ ⋅ 11= 3.9 10bulk

S  s. The values of the 
( )bulk
SL  and ( )τ bulk

S  pairs found are close to those obtained earlier 

by other research groups: the length of spin diffusion in tantalum 
2.7 5.1SL ≈ ÷  nm [34, 41], the spin relaxation time in tantalum 

12 117.8 10 1.3 10S
− −τ ≈ ⋅ ÷ ⋅  s [42]. Fig. 14 shows the depend‑

ences of  ( )τS L  and ( )SL L , constructed using the ratios (22) and 
(23), in which ( ) = 4.34bulk

SL  nm and ( ) −τ ⋅ 11= 3.9 10bulk
S  s, and 

for Lr  the values are taken from the experiment.

Figure 14 shows that the spin diffusion length increases 
with the increasing thickness of the β- tantalum film. A similar 
trend in the spin diffusion length for a metal layer with a strong 
spin-orbit coupling was observed experimentally in [43].

Description of the entire set of experimental dependences of 
( )L H  turned out to be possible only when taking into account 

the dependence of the parameter ξL on the thickness of the film. 
Figure 15 shows the found dependence of the absolute value of 
ξL  on the thickness of the film.

It follows from expression (19) that the condition ξ ≤ ξL  
is satisfied for any value L. The values ξL  obtained by us allow 
us to find the minimum possible value ξ(min) of the absolute value 

Fig. 13. Dependences of the Hanle magnetoresistance on 
the external magnetic field H for b-tantalum films. The 
experimental data for films with a thickness of 3, 5 and 
8 nm, respectively, are shown in square, round and tri‑
angular symbols. The green, red and blue solid lines cor‑
respond to the theoretical dependencies calculated by the 
formula (20)

Fig. 14. Spin diffusion length SL  (left scale) and spin re‑
laxation time tS (right scale), determined from the anal‑
ysis of experimental dependences of Hanle magnetore‑
sistance for thin films is b-tantalum, as a function of the 
film thickness L. The points are connected by a curve for 
ease of perception

Fig. 15. The absolute value of the parameter ξL , deter‑
mined from the analysis of  experimental dependenc‑
es of the Hanle magnetoresistance for thin β-tantalum 
films, as a function of the film thickness L. The points are 
connected by a curve for the convenience of perception
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of the spin Hall angle in β-tantalum: ξ(min) ≈ 0.0155. The value 
ξ(min) is the minimum value |ξ|, at which all our experimental 
data can be described consistently.

Let us analyze the dependence of the value of the parameter 
on the thickness of the film presented in Fig. 15 using the expres‑
sion (19), according to which = / 1 thLξ ξ + ψ λ. Fig. 15 shows 
that ξL  varies in the range 0.0065 ÷  0.0155.The change in 
ξL  in this interval when the film thickness L changes cannot 
be explained only on the basis of the explicit dependence of ξL  
on the film thickness given in expression (19) by the thλ, func‑
tion, since for the films under consideration its values weakly 
depend on L. Therefore, the change in  ξL  in the interval un‑
der consideration can be described only if there is dependence 
of the probability of surface scattering with a spin reversal ε on L.

Note that using only the found values ξL , from expression 
(19) we cannot independently determine two parameters ξ and ε. 
In this regard, to determine the dependence of ε( )L  in our films, 
we use the value of  ξ for tantalum, found experimentally in [44]. 
The authors of this work found that the spin Hall angle in β-tan‑
talum is ξ ≈ −0.02. Using this value of the spin Hall angle and 
taking the Fermi velocity equal to  8= 10Fv  cm/s (a close value 
was used in [8]), we obtained the dependence on the probability 
of surface scattering with a spin flip ( )ε L , represented by in Fig. 16.

Fig. 16 shows the tendency of the increase of ε with the 
growth of the film thickness L. Such a characteristic dependence 
of  ( )ε L  correlates with the dependence of the square of surface 
roughness on the film thickness (see Fig. 6). It is difficult to ex‑
pect a complete coincidence of these curves, since the probabil‑
ity of surface scattering with a spin flip depends not only on the 
RMS amplitude of the roughness, but also on their lateral size.

Note that there are experimental papers in the literature [43, 
45, 46] in which it was found that the spin Hall angle depends 
on the thickness of the film. In the light of the above results, 
it is impossible to exclude the possibility that conclusions about 
the dependence of the spin Hall angle on the film thickness were 

made without taking into account the influence of surface scat‑
tering with spin flip. In this paper, we demonstrate that in order 
to correctly extract data on the magnitude of the spin Hall angle, 
it is necessary to take into account surface scattering with a spin flip.

7. CONCLUSION
The paper presents a theory of dimensional effects in the 

magnetoresistance of thin films of normal metals arising from 
the presence of a strong spin-orbit coupling. The theory takes 
into account the scattering of conduction electrons with a spin 
flip on the film surfaces.

Within the framework of the constructed theory, it is shown 
that the spin-orbit coupling leads to an increase in the density 
of electric current near the boundaries of the film compared 
with the value of the current density in its depth. It is demon‑
strated that surface scattering with a spin flip, as well as an ap‑
plied external magnetic field, leads to suppression of the accu‑
mulation of the spin moment of electrons near the film surfaces 
and thereby to a decrease in magnetoresistance. 

Experimental studies of dimensional effects in magnetore‑
sistance have been carried out on thin tantalum films obtained 
by magnetron sputtering. Studies of the microstructure have 
shown that mainly the β-phase is formed in tantalum films. 
As the film thickness increases, the crystallite size increases 
and the surface roughness increases.

According to the results of galvanomagnetic measurements, 
the studied β-tantalum films have a high electrical resistivity 
in the range of 1.6 ÷ 3.2 µOhm ·m, as well as a negative tem‑
perature coefficient of electrical resistance.

The occurrence of positive longitudinal magnetoresistance 
in films has been detected in β-tantalum films in the thick‑
ness range of 3 ÷  11 nm. The experimental data are analyz‑
ed using the constructed theory. As a result, it was found that 
in the studied series of β-tantalum nanolayers, the spin diffu‑
sion length varies depending on the film thickness in the range 

≈SL  2.14 ÷ 3.85 nm, the spin relaxation time varies in the inter‑
val 111.9 10S

−τ ≈ ⋅  ÷ 3.5 −⋅ 1110  s. In massive β-tantalum, the spin 
diffusion length is  ( ) = 4.34bulk

SL  nm, and the spin relaxation 
time is  ( ) 11= 3.9 10bulk

S
−τ ⋅  s. The minimum value of the absolute 

value of the spin Hall angle at which our experimental data can 
be described is  ( )ξ ≈ 0.0155min . It is demonstrated that in order 
to correctly extract the spin Hall angle, it is necessary to take 
into account surface scattering with a spin flip. It is shown that 
the dependence of the probability of spin flip scattering on the 
film surfaces on its thickness correlates with the dependence 
of the square of the surface roughness on the film thickness. 

Fig. 16. Probability of surface scattering with spin flip e 
as a function of film thickness L. The points are connect‑
ed by a curve for ease of perception 
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