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Abstract. We examine fluctuations of vorticity excited by an external random force in two-dimensional fluid in
the presence of a strong external shear flow. The problem is motivated by the analysis of big coherent vortices
appearing as a consequence of the inverse energy cascade in a finite box at large Reynolds numbers. We develop
the perturbation theory for calculating nonlinear corrections to correlation functions of the flow fluctuations
assuming that the external force is short correlated in time. We analyze corrections to the pair correlation func-
tion of vorticity and some moments. The analysis enables one to establish validity of the perturbation theory

for laboratory experiments and numerical simulations.
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1. INTRODUCTION

Two-dimensional turbulence is high-Reynolds hydrody-
namic flow in fluid films on scales larger than the film thick-
ness [1]. From the practical point of view, the most interest-
ing such fluid “film” is atmosphere. Of course, atmosphere is
very complex object and its detailed description is extremely
difficult problem. However, some general features of two-
dimensional turbulence could be useful for understanding
atmospheric phenomena. Note in this respect the trend of
the production of large-scale eddies from small-scale ones
thanks to the non-linear hydrodynamic interaction in two-
dimensional fluids [2—4]. In presence of the external forcing
(pumping) the trend leads to formation of the inverse energy
cascade at scales larger than the pumping length [5].

In a finite box, the transfer of the energy to large scales
leads to formation of big eddies with the diameter of the order
of the size of the box [6, 7]. At some conditions big coherent
vortices are formed having large life time. Such coherent vor-
tices were observed both in laboratory experiments [8, 9] and
in numerical simulations [10]. In the work [11] the flat pro-
file of the mean velocity of the coherent vortex was observed
in numerical simulations and some arguments explaining the
profile were presented. In the works [12—16] the quasilinear
regime of the flow fluctuations inside the coherent vortex was
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utilized, the flat velocity profile was derived and some velocity
correlation functions were discussed. In the work [17] the cri-
terion of the formation of the coherent vortex was proposed,
based on the approach. The prediction is qualitatively con-
firmed in direct numerical simulations [18].

The flow fluctuations inside the coherent vortex are excit-
ed on top of its mean flow that locally can be approximated
by the shear flow. This is the motivation of the present work
where we consider the turbulent twodimensional flow in an
unbound fluid film in the presence of a strong shear flow. In
our theoretical scheme, we assume that the external force
exciting fluctuations of the flow on top of the static shear flow
is short correlated in time. We believe that the model reflects
general properties of the flow fluctuations excited by an ex-
ternal random force. However, the case where the correlation
time of the exciting force is relatively large (greater than the
inverse shear rate) needs a special attention. It is a sub ject of
future investigations.

The mean shear flow breaks space homogeneity. The fact
makes calculation of the correlation functions of the flow
fluctuations essentially more complicated than in the homo-
geneous case. However, one can formulate a consistent cal-
culation scheme based on the perturbation series. The series
is based on the representation of the correlation function via
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functional integrals can be constructed like in the quantum
field theory. The scheme gives the terms of the perturbation
series, that can be represented by corresponding Feynman
diagrams. We analyse first terms of the perturbation series
and formulate some its general properties. Namely, we cal-
culate fluctuation corrections to the pair correlation function
of the vorticity, its second moment and the Reynolds stress
tensor. The calculations enable one to establish the validity
criterion of the perturbation theory for the case.

We believe that the results obtained for the model can
be extended to explain properties of the coherent vortices.
Its mean velocity is a differential rotation. At analyzing the
fluctuation effects, the mean flow can be approximated as the
shear flow for distances from the vortex center much larger
than the pumping correlation length. From the other hand,
the local shear rate of the mean vortex flow diminishes as
the distance increases. It restricts the applicability of our ap-
proach from above. Thus, we are aimed to explain the prop-
erties of the coherent vortex in some region of the distances
from the vortex center that is the most interesting, since just
the region determines the features of the coherent vortex.

2. GENERAL RELATIONS

We consider the model of an unbounded twodimensional
fluid where some random flow is excited. We assume that
the random flow exists on top of the average static shear flow.
We choose the reference system with the first axis directed
along the velocity of the average shear flow. Then the veloc-
ity of the shear flow has the only first component V| = Zx,,
where X shear rate and X, is the second coordinate. We are
interested in statistical properties of the flow fluctuations and
examine effects related to their nonlinear interaction. The
fluctuations are described by (two-dimensional) random ve-
locity v. The flow is assumed to be incompressible: Vv = 0.

Having in mind thin fluid films, we introduce two dis-
sipative mechanisms: bottom friction and viscosity. Then, to
support the shear flow, a regular external static force should
be applied to the fluid. Besides, we include into the external
force applied to the fluid some random component f excit-
ing the flow fluctuations. The force fis assumed to be a ran-
dom function of time and coordinates with zero average and
possessing statistical properties homogeneous in space and
time. We analyze the statistically stationary state of the fluid.
The state is homogeneous along the first axis, however, the
homogeneity along the second axis is broken thanks to the
presence of the shear flow.

KOLOKOLOV, LEBEDEV

The equation controlling the flow velocity in the fluid is
two-dimensional Navier-Stokes equation with an additional
term describing bottom friction. Extracting the equation for
the random velocity v on top of the shear flow we find

04V + Zx,0(V + Znv, + (YWW)v + Vp = "
= —av + VW + f,

where p is pressure, o is the bottom friction coefficient, v
is the kinematic viscosity coefficient, and » is the unit vector
along the first axis. Note that the external force supporting
the shear flow is equal to a.Xx,n .

In two dimensions, it is convenient to describe the flow in
terms of vorticity. We introduce the vorticity @ of the fluc-
tuating flow:

@ = curlv = 0,v, — 0,v,. (2)

Obviously, @ is a scalar (or, more precisely, pseudosca-
lar) field. The equation controlling evolution of vorticity is
derived from Eq. (1):

0w+ vVWo + Xx, v _ —aw + VW + o,

o 3)

where

¢ =curlf =0/, —0,1.

To close the equation (3) one should restore the velocity
field v from the vorticity field @ . Due to the assumed incom-
pressibility condition

0v + 0,v, =0,

it is possible to introduce the stream function y, related to
the

=9y

- axz 5 (4)

M

To find the stream function y, it is necessary to solve the
Laplace equation

Vz\y = —o.

one can exploit the integral representation implying space
homogeneity and isotropy of vorticity as

w(r) = —z—ln [@*xwmn|r - x]. (5)

After finding y one calculates the velocity components
in accordance with Eq. (4).
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The external random force f pumps energy to the flow.
The average rate of the energy production per unit mass is
written as (f - v) . The angular brackets here and below des-
ignate an averaged value. In laboratory and numerical experi-
ments, the averaging is performed over time. In our theoreti-
cal setup, the averaging is performed over the statistics of the
pumping force f. Besides the energy production one intro-
duces the enstrophy production. The enstrophy production
rate per unit mass is written as the average (¢®), analogously
to the energy production rate. Both quantities, (f - v) and
(¢w) , are assumed to be homogeneous in space and time
in our model.

We assume that the pumping force f is short correlated in
time and is zero in average, <f ) = 0. Then statistical proper-
ties of the external pumping are fully determined by its pair
correlation function

(/o (,x)£3(0,y)) = 2e3(1)3,5E(x — ), (6)

reflecting the assumed homogeneity in space and time. We
fix 2(0) = 1, then the energy production rate is (f - v) = €.
Passing to ¢ = curl f, one finds from Eq. (6)

(0, x)0(0,y)) = —263(t)V*E(X — y),

where V in Laplacian V2 can be cither the derivative over

(7

X Or overy.

Generally, the correlation functions of the fluctuating
vorticity are not homogeneous in space due to the presence
of the mean shear flow, breaking homogeneity along the sec-
ond coordinate axis. However, a shift along the second coor-
dinate axis can be compensated by the corresponding Galile-
an transformation, as it follows from Eq. (3). The relation (7)
is invariant under a Galilean transformation. We conclude
that in our model simultaneous correlation functions of vor-
ticity are homogeneous in space. The same is true for the ve-
locity correlation functions. Particularly, all the single-point
moments are independent of the coordinates.

Multiplying the equation (1) by the fluctuating velocity v
and averaging the result, one finds the energy balance

e =2(vn) + a<v2> + v((@av)2). (8)

Multiplying the equation (3) by @ and averaging, one
finds the enstrophy balance

(0) = a(w’) + v((Vo)?). )

At deriving the relations (8,9) we omitted all complete
derivatives over time and coordinates. They are zero due to

JETP, Vol. 165, No. 1, 2024

123

stationarity and the independence of the coordinates of all
single-point moments.

The random force f is assumed to be characterized by a
correlation length k;l , where k f is the characteristic wave
vector of the force. We assume that the following inequality

S > vkj. (10)
is satisfied. The inequality (10) means that the shear flow is
strong enough to influence essentially the flow fluctuations

at the pumping scale. Further we consider the case where
the condition

a < vk;. (11)

As it was proposed in Ref. [17], the condition (11) has to
be satisfied for appearing coherent vortices in two-dimen-
sional turbulence. The opposite case o > vk} needs a spe-
cial analysis. Combining the inequality (10) with Eq. (11),
we conclude that the inequality X > o is satisfied in our
setup as well.

Our calculations, presented below, are conducted at the
assumption X > 0. However, all the results derived can
be easily extended to negative X . Say, the simple symme-
try reasoning show that the third moment <m3> changes
its sign at X — —X . As to the pair correlation function
(w(t,x)w(0,y)), the substitution ¥ — —% means that one
should change the sign of the second component x, — —X,,
Y, — —¥, without touching x;,y; . Similar reasoning en-
ables one to establish the transfor-mation laws of any correla-
tion function at the substitution ¥ — —X.

3. PERTURBATION THEORY
In the linear approximation the equation (3) is reduced
to the equation

@, +Lw=0, L= ZxZa%+oc—vV2. (12)
1

Solutions of the equation (12) without pumping ¢ were
analyzed in Ref. [20]. To find the correlation functions of
@ in the linear approximation, one should solve the equa-
tion (12) for arbitrary ¢ and then average the corresponding
product over the statistics of ¢, determined by Eq. (7).

To find corrections to the expressions, obtained in the
linear approximation, one has to take into account the non-
linear term vV in the equation (3). Solving the equa-
tion recursively, one obtains vorticity @ as a series over the
pumping force f. Averaging the products of vorticity over the
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statistics of the pumping force in accordance with Eq. (6)
one arrive at the perturbation series in terms of powers of
the parameter €. Such series produced by the nonlinear
hydrodynamic interaction was first considered in Ref. [21].
The terms of the series can be represented by Feynman dia-
grams, therefore the technique is called Wyld diagrammatic
technique. Wyld diagrammatic technique can be consistently
derived from the representation of correlation functions as
functional integrals over the observed variables and auxiliary
fields [21]. The integration is performed like in the quantum
field theory with the weight exp(—Z) , where Z is the ef-
fective action. A detailed description of the technique can be
found in the review [22].

In our case, the functional integral is written in terms of
the vorticity ¢ and the corresponding auxiliary field p. The
effective action Z can be derived from the equation (3) and
the relation (7). It is written as

=1, +1;,, (13)
where
7, = f drd*xp(d, + Ly + "
te f dtd*xd*rV*E(x — r)u(t, X)u(,r),
Ly = [dtd’xpwVe. (15)

The velocity v in Eq. (15) is implied to be expressed via
the vorticity @ , see Egs. (4,5).

Let us introduce the pair correlation functions. The pair
correlation function of the vorticity is written as the following
functional integral

((t,)(s,y)) = [DoDue "ot x)o(s,y). (16)
We introduce also the following pair average
(@(t,x)u(s.y)) = [DwDue "t (), (17)

correlation function (17) determines a response of the system
to an additional external force. Note that the pair average
<uu> is zero.

Because of the time homogeneity the pair correlation
function of vorticity (16) and the Green function (17) depend
solely on the time difference # — 5. Due to the presence of
the shear flow the space homogeneity is broken in our model.
Therefore the pair correlation function (16) and the Green
function (17) depend on both space coordinates. More pre-
cisely, the space homogeneity is broken in the direction of
the second axis. Therefore the pair correlation function (16)

KOLOKOLOV, LEBEDEV

and the Green function 17) depend on both second coordi-
nates, X, and y,, and on the difference x; — y; .

Any correlation function of @, can be written as the
functional integral analogously to the pair correlation func-
tion (16) and the Green function (17). One can evolve the
perturbation theory for the correlation function expanding
the weight exp(—Z) in the functional integral over the third
order term Z;,, (15) and calculating the resulting Gaussian
functional integrals. The integrals are expressed in terms of
the “bare” correlation functions determined by the quadratic
term (14) in the effective action:

(@600, = [DaDue 2w(,x)u(0,y), (18)

(@(1,x)3(0,y)) = f DaDue 2w(t,x)w(0,y). (19)

The average of the type (@...J...), is determined by
Wick theorem [24] and it is equal to the sum of products of
the pair averages (18,19) organized by all possible pairings.

The procedure enables one to construct the perturbation
series in the spirit of quantum field theory, see, e.g., [25].
To use the perturbation series one should know the “bare”
correlation functions (18,19). We proceed to calculating the

correlation functions.

3.1 “Bare” correlation functions
The “bare” correlation functions (18,19) are expressed in
terms of the Gaussian integrals and can be easily found ex-
plicitly. The expression (14) lead to the following equation
for the “bare” Green function

0, + L)@, x)1(0,y)), = 8(t)d(x — y). (20)

Remind that any Green function is zero at negative times
due to causality. Therefore (@(z,x)p(0,y)) is zero at t < 0.
The expression for the “bare” pair correlation function can
be derived using Eq. (19):

(@(1,X)®(0,y)), = —2¢ f dt f d2rd* 7V E(r — 7)

1)
X <m(t5 X)H(Ta r)>0 <m(07 Y)H(T, Z)>() .

Note that T < Oand t < ¢ in the integral (21).

Let us pass to Fourier transforms of the pair correlation
function (21) and the Green function (20). Since they de-
pend on both coordinates, the transform includes two inte-
grals. We use the following definitions:
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2 .

(@t 0u0.y)y = [ d(zk‘j 4 Rx G kg, (22)
2 2

(@000, = [ LALLMy p kg, 03)

(n)’
The pair correlation function (23) is invariant under the
substitution f — —f, X<y or k < q.
For the Fourier transform G(t, k, q) (22) we derive from
Eq. (20) the following differential equation

0 0

(o~ T + ot vk + vk3)G(t.k,q) =

(24)
= (2n)28(1)3(k — q).

Since the equation (24) is of the first order, it can be eas-

ily solved by the method of characteristics to obtain

g(t,k,q) =
X S(kz

m)*0(N3(k; — qy) x (25)
- q2 —|— Zklt)G(taq)a

lv22c112t3), (26)

G(1,q) = exp(—at — qut + v2q2q1t2 —3

where 0(¢) is Heaviside step function, 6(r) =1 if £ > 0
and 6(r) =0
flects causality: G = 0 if't <0.

There is the general property of Green functions

d2p
g(t + t.k,q) = g(t.k,p)g(n,p,q), (27)
J (2n)’
where ¢ > 0,7 > 0. Using Eq. (27), one finds
G(t + Taq) = G(t9‘I15‘I2 - EQIT)G(Taq)' (28)

Of course, one can directly check the relation (28), using
the expression (26). Note also the expression

d*k
il o exp(ik - X)G(t,k,q) 0

- 241t)x2]G(t, qQ)

for the partial Fourier transform of Eq. (25).
We obtain from Egs. (21,22,23)

= B(1)expligx; + i(q,

F(ka)=2 [dr [ 2)2 PEEX
x G(t + 1.k, p)g(r,q,—p)-
Here
=Z(k) = fa’2xexp(—ik-x)5(x) (31)

is spacial Fourier transform of Z(r).
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if £ < 0. The function 6(¢) in Eq. (26) re-
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Substituting the expression (25) into Eq. (30), one finds

F(t,k,q) = 2e2n)*8(k; + q,)8(ky + q, + Zkit) x
% f dt0(1)8(t + TP E(P)G(t + 1,p)G(1,p),

where
b= k1 =4,

(33)
pz = k2 + Z(t + T)kl = —q2 — Zqu.

For the simultaneous correlation function one obtains

F(0,k,q) = (2m)*3(k + q)F(q), (34)

F(k) = 26 [dp’Z(D)G’ (5.p), (35)

where py = ki, p, = k, + Xtk . Using Eq. (28) one finds
from Eq. (32)

F(t.k,q) = Qn)*8(k, + q,)8(ky + g5 + Ztky) x

ky + 2tk ) F(q).

(36)

Of course, for ¥ — 0 we return to Eq. (33).

3.2 Some “bare” quantities
Let us examine the bare contribution to the nondiagonal
component of Reynolds stress

zfdkqumﬂ LD,
ent g’

where the factor at F in the integrand is obtained from

(v(0,0)r,(0,0)),

Eq. (4). Substituting here the expressions (33,34) one obtains

(0, 0)V2(0, 0))o =

—2sfdtf

p(—=py +Zpv)
(5} + (—py +Zp0)* P

) PE(D)IG(rp)I X (37

where G(t,p) is determined by Eq. (26). Here p; ~ p, ~ k 5
and the characteristic T is determined by the denominator, that
and G(t,p) can be substituted by unity. Taking
then the integral over T,
o0
f dt
2 212
o " +(p—qx0)]
one finds the result [12, 13]

iserfl,

q(—p+qzv)  _ 1
25(¢ + p?)
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d*p -

0,0)v,(0,0
(11(0,0)»,(0,0)), = )

Ep =5, 49

since Z(0) =1 by definition.
The expressions (33,34) enable one to evaluate the bare

value of the second moment of the vorticity:

—28fd1f

The values of the components of the wave vector p can

el E(GP(t.p).

be estimated as k f- Therefore in the main approximation
we can keep solely the last term in the exponent in Eq. (26):

1
G(z,p) — e><p(—§vz2 ). (39)

Substituting then p; ~ p;, ~ k £, We end up with the
estimate

(@) ~ekjt,, 1, = (k). (40)

Note that

z> tIl > vk}.

The inequalities are explained by the condition (10).
Note also that at, < 1. The inequality is explained by the
same condition (10) and the condition (11).

One can find the factor in the law (39) for a particular
Z(p) function. Say, one can take

~ 2n p2
E(p) = —exp(—=5), (41)
kf 2kf
corresponding to
2(x) = exp(—k]zcx2 / 2).
Then one finds [26]
10/3
2 2 1
<(Ii >0 32/3\/’ [ ] [ ]gkf Ty (42)

The result of the calculation confirms the general esti-
mate (39).

Analogously, the bare pair correlation function can be
evaluated [26]. The simultaneous correlation function (33)
is determined by F(K)that is given by the integral (34) If

kp 2 k> vky /3, kp 2k,

then the characteristic time in the integral (34) is determined
by k; , see Eq. (38), and we obtain

~ g1,k kf4/3k 2/3, (43)
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Thus for kj,ky ~k; we have F ~et, and for
k ~ka/2k2 ~ k; we have Fws/ka The ex-
pression (41) gives the universal scaling behavior between
the limit cases.

One can obtain a convenient expression for F(k) using
the particular form (40) of the pumping correlations. If

then
F(k 1/3F 4 41‘[8‘[ k2 k2 44
(k) = ( ) ( )W Xp(— E) (44)

in accordance with the law (41). Fourier transform of the
expression (42) enables one to restore the properties of the
simultaneous pair correlation function in real space exam-
ined in Ref. [26].

3.3 Interaction corrections

As we explained, interaction corrections to the bare val-
ues of the correlation functions has to be calculated in the
framework of the perturbation series. It is constructed by the
expansion of the factor exp(Z, + Z;,,) in the series over
Z,,; (15)in the corresponding functional integral. Each term
of the expansion can be found analytically, using Wick theo-
rem [23]. It is a multiple integral over times and wave vectors
of some expression determined by the “bare” pair correla-
tion functions, Green functions and factors corresponding
to converting @ — V. Note that to increase the order of the
perturbation series by unity, one has to take into account two
additional terms of the expansion over Z;,

The terms of the perturbation series can be represented
by Feynman diagrams. The diagrams determined the first
order correction to the pair correlation function of vorticity
are depicted in Fig. 1. Higher order corrections correspond
to more complicated diagrams. An example of more com-
plicated diagram determining the second order correction to
the pair correlation function of vorticity is depicted in Fig. 2.
The order of the perturbation series corresponds to the num-
ber of loops of the diagrams. Say, the first order correction to
the pair correlation function of vorticity is determined by the
one-loop diagrams, see Fig. 1, and the second order correc-
tion to the pair correlation function of vorticity is determined
by the two-loop diagrams, see Fig. 2.

All lines on the diagrams are thought to be consistent of two
segments, solid segments correspond to the field @ whereas
dashed segments correspond to the field p. Thus, a combined
solid-dashed line designates the Green function G(z,k,q)

JETP, Vol. 165, No. 1, 2024
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Fig. 1. Feynman diagrams representing first corrections
to the simultaneous pair correlation function.

and a solid line designate the pair correlation function
F(t,k,q) . Two solid segments and one dashed segment are
attached to each vertex in accordance with the structure of lint
(15). The factor corresponding to each vertex is

1,1

1
E(q_Q - P)(%kl - qiky), (45)

where k,q are wave vectors of the solid segments attached
to the vertex.

To construct the analytical expression, corresponding to
a given diagram, one should fix the corresponding combina-
torial factor, take the product of the Green functions, of the
pair correlation functions and of the vertex factor and inte-
grate the result over “internal” wave vectors and times. The
integration should be performed at the condition of the wave
vector conservation at each vertex: the sum of the wave vec-
tors of three segments attached to the vertex has to be zero.
It is interesting that the corrections to G, F reproduce the
structure of the bare correlation functions (25,35) with the
same O -functions. Thus, one can extract from the diagrams
corrections to the functions G(¢,k), F(K). The property is
a consequence of assumed short correlation in time of pump-
ing. That is why we have chosen the model, since the prop-
erty simplifies essentially concrete calculations.

The perturbation series is presented by a set of diagrams
with different number of loops. Enhancement by unity of the
number of the loops means adding one F- line, one G-line
and two vertices to the diagram. Note that F contains € as
a factor, see Eq. (34), whereas G and the factor (43), cor-
responding to a vertex, do not. Therefore one can say, that
the perturbation series is a series over €. The dimensionless
parameter controlling the perturbation series is

JETP, Vol. 165, No. 1, 2024

Fig. 2. Two-loop diagram representing a second-order
correction to the pair correlation function.

(46)

For different objects, the parameter (44) can be cor-
rected by factors depending on the dimensionless quantities
vk% /2, k/ kf, ky/ kf . Any case, the parameter (44)
should be small for validity of the perturbation series.

Note that zero contribution to the third moment of vor-
ticity (@) is zero. The first non-vanishing contribution to
<w3> appears in the first order in the perturbation theory.
Let us stress that it is determined by a “tree” diagram, where
loops are absent. Thus, the contribution needs a special anal-
ysis made in Ref. [26]. The result is

272
Ngkf

22\/

(w’) (47)

a logarithmic factor. The quantity (45) satisfies the relation
(@) ~ B((w?)y)’,

see Eq. (39). The factor B in Eq. (46) is a manifestation of
the fact that the main contribution to the third moment of

(48)

vorticity appears in the first order of the perturbation series.

4. CORRECTIONS TO THE PAIR CORRELATION
FUNCTION OF VORTICITY

We proceed to calculating corrections to the pair correla-
tion function. The calculation reveals the peculiarities of the
perturbation series and demonstrates some universal features,
that can be used for evaluating more complicated objects. We
concentrate on analyzing the simultaneous correlation func-
tion, depending solely on the coordinate difference. The cor-
rection is written as

2
(o ()0(0) = [ oF ).

(49)

where 0F(Kk) is the correction to the function F(k) intro-
duced by Eq. (35).

In the first order of the perturbation series the correc-
tion 8F(K) is determined by the diagrams depicted in Fig. 1.
Let us stress that we deal with nonsimultaneous correlation
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functions inside the diagrams. Therefore one should use the
general functions G(z,k,q), F(z,Kk,q), see Egs. (25,26,35).
The analytical expressions for the contributions to dF(K),
corresponding to the diagrams a and b in Fig. 1, are

F,(k) = 27dt7ds
0 0

x G(t,~ky,—ky — Stk )G(s + 1,q) X

(50)
XV (m,p)G(s, P)G(5,m) F(m) F(p) x
< (= Ly ompy — mypy)
m> p
and
FEk)=—-4]|dt|d
o= aJufaf L.
< G(t1, —kl,—k2 - Ztkl )G(s + 1,q) x 1)
XV (m, DG (s, P)G (s, m)F(m) F(q) x
* (= — Ly mygy — may),
where 1

q =k, gy = ky +2(t + 5k,
=k —m, py=ky—m +2(t+ 5)k,

and V is the factor (43) corresponding to the left vertices:

V(m,p) =
YN S
2\mi +(my—Zsm)*  pi+(p,—Zsp)?| (52
X(mypy —mp;).

The expressions are written in accordance with the gen-
eral rules of reading diagrams.
The integrand in Eq. (48) is invariant under the permuta-
tion m < p. Therefore one can substitute
1 1 2

[N ——
m2 P2 m2

(33)

After the substitution we find

SF(k)=F, + F, = 47dt7ds [ dz’"z X
0 0

(2m)
x G(t,—ky,—ky — 2tk )G(s + 1,q) ¥
x V(m,p)G(s,p)G(s,m)F(m) x
e (;1) ) sz (@
q m

where p=q —m.

(54)

(m2q1 - mﬂz)a
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4.1 Intermediate region of wave vectors

Let’s examine the case

vk}%
T<<k1<<kf, kszf, (55)
corresponding to the universal bare behavior (41). There are
some regions of the integration over 7 in the integral (51)
that have to be examined to extract the main contribution to
the correction OF .

Let us examine the region of the integration

ml Nm2 Nkf

then
My —mqy ~ Mgy, P~ —
and
OF(k) =2 |dt|ds
JirJo
X G(t,—ky,—ky — Zth;)G(s + t,q)m}q3 x

(56)

1 1
X — X
{ml2 + (m, —2sm1)2 12 +(py —Esp1)2

X G(s,p)G(s, m)F(m)[‘:‘q) F <P>n:2F(q)]_

Here the integration over s is determined by the denomi-
nators and § ~ . Thus dependencies on s everywhere ex-
cept the denominators can be neglected: in the Green func-
tions s ~ £ ! gives small corrections and s enters to 9, Dy
with the small factor k; . Since s enters the denominator via
the factor mys and all other factors are functions of mlz , we
may integrate over m; from 0 to oo and over s from —oo

to oo . Next,

fds TC2

e mi + (m2 — Zsmy)? Zml

Thus, the integrals over s of the difference of the terms
depending on m and p cancel each other. Thus, the main
contribution to the correction 8F from the region of the
integration my ~ m, ~ k is absent.

Therefore the main contribution to the integral (51) is
gained from the region m; ~ k; and m, ~ k. Then the
characteristic times are determined by F(p), F(q), that is

ky -1 2,1
stw— I st < (vhy)

TR (57)

The estimates (53) explain the relation my ~ k; since
my is determined by the denominators of V' (m,p) (50).
The estimates (53) mean that all the Green functions in Eq.
(51) can be substituted by unity. Thus we arrive at

JETP, Vol. 165, No. 1, 2024
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SF(k) = 4fdtfd

(58)
o F(;l)Jr F(p) f2F(q)
q m

(mqu - m1q2),

where p=q —m.
The inequalities m; < m, and p; < p, enables one to
substitute

e
V(m,p) — E(mzpl —mp,) X

(59)

1
&(my — Zsmy) — mS(pz —Zsp)|s
1

|1|

as it follows from Eq. (50). Then we find from Egs. (50,54)
SF(K) =fdrfdsf2—
0 0
1
{| |6(Esm1 my) — mS(Zspl — pz)} X (60)
m |

X Fm)F(@)(—5 — —)(mg, — mg,)™
q m

One can rewrite the expression (56) as

o0 OOd
8F() = [ [ drds [ S7tim|(ky + 2k))” x
0 T (61)
1

% F(q) #) - F(p)(ql—2 )

1
F(m)(— -
q
where

my =Ysmy, q =k, qy =k, +Z(t+ )k,

pl = kl — ml, pz = k2 — Zsml + Z(t + S)kl'

The signs of k;, k, are arbitrary here.

Let us check that the integral (57) converges at m; >> k;.

Then in the main approximation

Gy = ky + Zthy, pp = —my, py = g, — my.

Passing from the integration over s to the integration over

m, = Zsmy, we find

1 x o0
8F(k) = 5 fo f dtdm, f dm, g3 F(q) x
o0 (62)

1

1 11
x| F(m)(— — —) — F(p)(— — )|
¢ m’ ¢ p }
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Shifting the integral over m, in the second term in the
square brackets, we arrive at zero main contribution to the
integral. Next terms of the expansion of the integrand in
Eq. (57) over the parameter £ / my give converging integrals.

The expression (57) enables one to evaluate the correc-
tion 8F in the region (52). Combining the estimates m; ~ k,
(53), and the relation (41), one finds

k3
SF () ~ B F (o), ©3)

where [ is defined by Eq. (44). The factor Vk} / Tk issmall
for the considered region (52). It becomes of order unity at
ky ~ Vk} / £ where the relative correction to F (58) is esti-
mated as B (44). Let us find the correction & F using the par-
ticular function (42). Since 8 F(k) is symmetric under k ~ —k,
without loss of generality, we assume k, > 0 whereas k, is as-
sumed to have an arbitrary sign. We substitute the expression
(42) into Eq. (57) and pass to the dimensionless variables «,
1, 6, W in accordance with

kf k

= I
TR s T 5 0k

pl = kl(l—u),qz = kf(K+T+G),
my = ksOW, p) = k(X — O+ T+ 0).

= ka,
(64)

Then we arrive at

SF(k) _
F(k)

-

xu(zc—i—r)zexp -

P )2/ 3 kz) (65)

where

Kﬂff dtdodp x

(k + ‘Cz—i- (5) o

wlo?

2

uc —(K+T+6)
Llw

~[(x—op +1+06)* — (k + T+ 0)*|x

(66)

2
« 12/36Xp (x cu—zkt—i—cs) _
1=y

—[(k+ou+71+06) —(k+ 1T+ 0)*]x

|

" 12/3exp_(lc+ou+r+c)
1+ | 2
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Fig. 3. The integral (61) as a function of | k, | /& rat posi-
tive k, / k; (blue line) and negative k, / k; (yellow line).

The integral (61) found numerically is plotted in Fig. 3.

Note that in accordance with Egs. (41,60) &F o k1_4/ 3

Therefore the integral over k; in the expression for the
correction to the second moment of vorticity

2
sw?) = [ (;’n’)‘z D 67)

is sitting on the low limit of the interval (52), k; ~ vk} /Z.
Therefore at calculating 8(m2> one cannot use the estimate
(41) or the expression (42), and one should return to the gen-

eral expression for the pair correlation function.

4.2 Correction to the moments
Integrating the expression (51) over k and passing to the
integration over p, one finds

5(w?) = 4Tdt7ds [ d(;’:;p
0 0

X G(t7 _417_‘]2 + qul )G(S + t: q) X
XV (m, p)G(s,p)G(s, m) F(m) x

« F(;l) L F sz(q)
q m

(68)

(m2p1 - m1P2),

where = p + m . As for the pair correlation function in
the region (52), in the integral (62) m; << m, and p; < p,.
Therefore one can use the substitution (55).

Performing the substitution (55) in Eq. (62), we get

KOLOKOLOV, LEBEDEV

-2 fdt fds Jnde,

xG(t,—q,—q, + qul )G(S + 1,9)G(s,p)G(s,m) x
1 (69)
><F(m)[| |8(m2 2sm1)—m8(p2 — Zsp)| X
F F(p)— F
X q(;l) + (p)m2 @ (mypy — mll’z)z-

The estimates for the variables in the integral (63) are

1
SNtN—z, pszszf’

vy
3
vk
P~k N—f, F'\’i,
2 ka
where we assumed o < ijzc. Then
212
ek 1
S(w?) ~ ——L @2, (70)
(o) ~ L~ b (o

where [ is defined by Eq. (44).
Analogously, one can find the estimate for the non-diag-
onal component of Reynolds stress tensor

272
Ska ka

3(vvy) ~ 5 ——{")os

(71)

where (vv,), is given by Eq. (37) We see in the estimate
(65) the additional smallness vk? 7 / Z . Itis in accordance
(8)ata o < vk? #» that the correction 8(vv,) to the value
¢ / X should contain an extra factor v / ¥, in comparison
with the correction 8(wz> . Then we obtain Eq. (65) from

Eq. (64).

4.3 Higher order corrections to the pair
correlation function

Each Feynman diagram has an amount of loops. For ex-
ample, the diagrams depicted in Fig. 1 are characterized by
one loop, whereas the diagram depicted in Fig. 2 contains
two loops. The number of loops correspond to the order of
controlling the loop expansion for the pair correlation func-
tion in the region (52). Passing from the diagram with »
loops to the diagram with n + 1 loops, we get two additional
vertices, one additional G-line and one additional F-line. We
get also two additional integrations over times (related to the
two additional vertices) and an additional integration over a
wave vector.

One can choose for the integration the wave vectors
m belonging to one of the vertices. Then the wave vectors

JETP, Vol. 165, No. 1, 2024
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belonging to the other additional vertex are expressed via the
times and the wave vectors m. Then the corresponding factor
(43) looks like in Eq. (50) and can be substituted as in Eq. (55).
The same logic as for the first correction leads to the conclu-
sion that the factor carrying by the additional loop is

B(ﬂf/ >,

5 (72)

Thus, it is (72) that is the small parameter that justifies
the perturbation theory.

If we consider corrections to moments such as 5(132) or
3(vv,) , then the integrals that determine the corrections are
accumulated in the region of characteristic values of the first
components of the wave vectors ~ vk} / Z corresponding
to the lower boundary of the region (55). There, the small
parameter of the series of perturbations is equal to 3. There-
fore, we can estimate the nth order corrections to the second
moment as follows:

ek
6n<wz> NTanﬂ
) (73)
8ka "
6n<vlv2> ~ 22 B .

However, you should be careful. <<Bare>> contributions
to moments (38), (40) do not obey the logic established for
(73). Consequently, estimates (73) do not cover expressions
(38), (40) for n = 0; they turn out to be much larger than
estimates (73) for n = 0.

5. CONCLUSION

We examined statistical properties of the random flow
excited by a relatively weak random force on top of a strong
static shear flow. We established that the small parameter
controlling the perturbation series in the framework of our
model is B (44). Note that the parameter is independent of
the correlation length of the pumping force. Corrections
to the second moment are determined by the wave vectors
where the second component is of the order of the wave
vector of pumping ky ~ k o whereas the first component is
much smaller, ky ~ vk; / X Thus the main contribution to
the corrections are supplied by non-isotropic blobs of vortic-
ity, strongly elongated along the shear velocity.

It is worth noting that the contribution of interaction with
fluctuations at the pump length, where both components of
the wave vectors are estimated as k I contains cancellations,
leading to effective locality of interaction in k-space. Such
locality justifies the universality of the behavior of correlation
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functions in the domain (52). Similar cancellations occur
in the perturbative approach to three-dimensional turbu-
lence [27, 28].

Our investigation was motivated by examining the struc-
ture of the coherent vortices generated as a consequence of
the inverse cascade in two-dimensional turbulent flows in fi-
nite boxes. One can estimate the parameter 3 for the flat
mean polar velocity profile U = /3¢ / o [11] where € is
the energy pumped to the fluid per unit mass and o is the
bottom friction coefficient. Then the local mean shear rate is

1/2 1

> ~ g 202y R

where r is the distance from the vortex center. Thus, the
parameter 3 (44) is

2 -1

B~arv .
Since the approximation of the local mean shear flow is
correct at k > 1 (where k r is the characteristic wave
vector of pumping), the parameter B can be small in some
region of distances ifa o < ijzc . The condition can be easi-
ly achieved in numerical simulations, but it is hardly achieved
in laboratory experiments with thin fluid films. Note, how-
ever, that our model by itself can be realized experimentally,
if besides the small-scale random pumping some strong shear
flow is produced in the fluid. In addition, in three-dimen-
sional systems with strong rotation, turbulence is effectively
two-dimensioned [29]. As a result, column vortices may oc-
cur, which are almost uniform along the axis of rotation [30].
For such systems, the effective coefficient of friction can be
significantly less than the viscous dissipative parameter.
Returning to the coherent vortices, we conclude that it
interesting to analyze the case where the parameter f3 is not
small. In the case we encounter the situation of strong inter-
action typical for turbulent systems. The case needs a special
investigation which is outside the current work. Note, how-
ever, that the energy balance (8) is an exact relation valid
for the strong interaction regime as well. Thus, we expect
that the non-diagonal component of Reynolds stress tensor
isequal to € / X (at large enough shear rate X ) even in the
strong interaction regime. Therefore the flat velocity profile
U=
ter of the interaction.

3¢ / o is universal being independent of the charac-

In our calculations, we used the specific model where the
pumping force is short correlation in time. It enables one to
relieve the calculations in comparison with the general case
of pumping with finite correlation time. However, we hope
that the general consequences obtained in the framework of
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our particular model are universal and are valid for the gen-
eral case. Say, the energy balance (8) is independent of the
model. Therefore the conclusions concerning the relation
between the corrections to the second moment of vorticity
and to the non-diagonal component of Reynolds stress ten-
sor (see Subsection IV B) are universal as well.
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