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 1. INTRODUCTION
Two-dimensional turbulence is high-Reynolds hydrody-

namic flow in fluid films on scales larger than the film thick-
ness [1]. From the practical point of view, the most interest-
ing such fluid “film” is atmosphere. Of course, atmosphere is 
very complex object and its detailed description is extremely 
difficult problem. However, some general features of two-
dimensional turbulence could be useful for understanding 
atmospheric phenomena. Note in this respect the trend of 
the production of large-scale eddies from small-scale ones 
thanks to the non-linear hydrodynamic interaction in two-
dimensional fluids [2–4]. In presence of the external forcing 
(pumping) the trend leads to formation of the inverse energy 
cascade at scales larger than the pumping length [5].

In a finite box, the transfer of the energy to large scales 
leads to formation of big eddies with the diameter of the order 
of the size of the box [6, 7]. At some conditions big coherent 
vortices are formed having large life time. Such coherent vor-
tices were observed both in laboratory experiments [8, 9] and 
in numerical simulations [10]. In the work [11] the flat pro-
file of the mean velocity of the coherent vortex was observed 
in numerical simulations and some arguments explaining the                    
profile were presented. In the works [12–16] the quasilinear 
regime of the flow fluctuations inside the coherent vortex was 

utilized, the flat velocity profile was derived and some velocity 
correlation functions were discussed. In the work [17] the cri-
terion of the formation of the coherent vortex was proposed, 
based on the approach. The prediction is qualitatively con-
firmed in direct numerical simulations [18].

The flow fluctuations inside the coherent vortex are excit-
ed on top of its mean flow that locally can be approximated 
by the shear flow. This is the motivation of the present work 
where we consider the turbulent twodimensional flow in an 
unbound fluid film in the presence of a strong shear flow. In 
our theoretical scheme, we assume that the external force 
exciting fluctuations of the flow on top of the static shear flow 
is short correlated in time. We believe that the model reflects 
general properties of the flow fluctuations excited by an ex-
ternal random force. However, the case where the correlation 
time of the exciting force is relatively large (greater than the 
inverse shear rate) needs a special attention. It is a sub ject of 
future investigations.

The mean shear flow breaks space homogeneity. The fact 
makes calculation of the correlation functions of the flow 
fluctuations essentially more complicated than in the homo-
geneous case. However, one can formulate a consistent cal-
culation scheme based on the perturbation series. The series 
is based on the representation of the correlation function via 
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functional integrals can be constructed like in the quantum 
field theory. The scheme gives the terms of the perturbation 
series, that can be represented by corresponding Feynman 
diagrams. We analyse first terms of the perturbation series 
and formulate some its general properties. Namely, we cal-
culate fluctuation corrections to the pair correlation function 
of the vorticity, its second moment and the Reynolds stress 
tensor. The calculations enable one to establish the validity 
criterion of the perturbation theory for the case.

We believe that the results obtained for the model can 
be extended to explain properties of the coherent vortices. 
Its mean velocity is a differential rotation. At analyzing the 
fluctuation effects, the mean flow can be approximated as the 
shear flow for distances from the vortex center much larger 
than the pumping correlation length. From the other hand, 
the local shear rate of the mean vortex flow diminishes as 
the distance increases. It restricts the applicability of our ap-
proach from above. Thus, we are aimed to explain the prop-
erties of the coherent vortex in some region of the distances 
from the vortex center that is the most interesting, since just 
the region determines the features of the coherent vortex.

2. GENERAL RELATIONS
We consider the model of an unbounded twodimensional 

fluid where some random flow is excited. We assume that 
the random flow exists on top of the average static shear flow. 
We choose the reference system with the first axis directed 
along the velocity of the average shear flow. Then the veloc-
ity of the shear flow has the only first component V x1 2= Σ , 
where Σ  shear rate and x2  is the second coordinate. We are 
interested in statistical properties of the flow fluctuations and 
examine effects related to their nonlinear interaction. The 
fluctuations are described by (two-dimensional) random ve-
locity v. The flow is assumed to be incompressible: Ñv = 0 .

Having in mind thin fluid films, we introduce two dis-
sipative mechanisms: bottom friction and viscosity. Then, to 
support the shear flow, a regular external static force should 
be applied to the fluid. Besides, we include into the external 
force applied to the fluid some random component f excit-
ing the flow fluctuations. The force f is assumed to be a ran-
dom function of time and coordinates with zero average and 
possessing statistical properties homogeneous in space and 
time. We analyze the statistically stationary state of the fluid. 
The state is homogeneous along the first axis, however, the 
homogeneity along the second axis is broken thanks to the 
presence of the shear flow.

The equation controlling the flow velocity in the fluid is 
two-dimensional Navier-Stokes equation with an additional 
term describing bottom friction. Extracting the equation for 
the random velocity v on top of the shear flow we find

	
∂ + ∂ + + ∇ +∇ =

= − + ∇ +

t x v pv v n v v

v v f

Σ Σ2 1 2

2

( )

,α ν
	 (1)

where p  is pressure, α  is the bottom friction coefficient, v 
is the kinematic viscosity coefficient, and n is the unit vector 
along the first axis. Note that the external force supporting 
the shear flow is equal to αΣx2n .

In two dimensions, it is convenient to describe the flow in 
terms of vorticity. We introduce the vorticity ϖ  of the fluc-
tuating flow:
	 ϖ = .1 2 2 1curlv ≡ ∂ −∂v v 	 (2)

Obviously, ϖ  is a scalar (or, more precisely, pseudosca-
lar) field. The equation controlling evolution of vorticity is 
derived from Eq. (1):

	 ∂ + ∇ +
∂
∂

− + ∇ +t x
x

ϖ ϖ
ϖ

αϖ ν ϖ φv Σ 2
1

2= , 	 (3)

where
	 φ = .1 2 2 1curlf ≡ ∂ −∂f f 	

To close the equation (3) one should restore the velocity 
field v from the vorticity field ϖ . Due to the assumed incom-
pressibility condition
	 ∂ + ∂1 1 2 2 = 0,v v 	

it is possible to introduce the stream function ψ , related to 
the

	 v
x

v
x1

2
2

1

2= , = , = .
∂
∂

−
∂
∂

−∇
ψ ψ

ϖ ψ 	 (4)

To find the stream function ψ , it is necessary to solve the 
Laplace equation

	 ∇ −2 = .ψ ϖ 	

one can exploit the integral representation implying space 
homogeneity and isotropy of vorticity as

	 ψ
π

ϖ( ) =
1

2
( ) .2r x r x− −∫ d x ln 	 (5)

After finding ψ  one calculates the velocity components 
in accordance with Eq. (4).
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The external random force f pumps energy to the flow. 
The average rate of the energy production per unit mass is 
written as 〈 ⋅ 〉f v . The angular brackets here and below des-
ignate an averaged value. In laboratory and numerical experi-
ments, the averaging is performed over time. In our theoreti-
cal setup, the averaging is performed over the statistics of the 
pumping force f. Besides the energy production one intro-
duces the enstrophy production. The enstrophy production 
rate per unit mass is written as the average (φϖ), analogously 
to the energy production rate. Both quantities, 〈 ⋅ 〉f v  and 
〈 〉φϖ , are assumed to be homogeneous in space and time 
in our model.

We assume that the pumping force f is short correlated in 
time and is zero in average, 〈 〉f = 0 . Then statistical proper-
ties of the external pumping are fully determined by its pair 
correlation function

	 〈 〉 −f t f tα β αβεδ δ( , ) (0, ) = 2 ( ) ( ),x y x yΞ 	 (6)

reflecting the assumed homogeneity in space and time. We 
fix Ξ( ) = 10 , then the energy production rate is 〈 ⋅ 〉f v = ε . 
Passing to φ = curl f , one finds from Eq. (6)

	 〈 〉 − ∇ −φ φ εδ( , ) (0, ) = 2 ( ) ( ),2t tx y x yΞ 	 (7)

where ∇ in Laplacian Ñ2  can be either the derivative over 
x or over y.

Generally, the correlation functions of the fluctuating 
vorticity are not homogeneous in space due to the presence 
of the mean shear flow, breaking homogeneity along the sec-
ond coordinate axis. However, a shift along the second coor-
dinate axis can be compensated by the corresponding Galile-
an transformation, as it follows from Eq. (3). The relation (7) 
is invariant under a Galilean transformation. We conclude 
that in our model simultaneous correlation functions of vor-
ticity are homogeneous in space. The same is true for the ve-
locity correlation functions. Particularly, all the single-point 
moments are independent of the coordinates.

Multiplying the equation (1) by the fluctuating velocity v 
and averaging the result, one finds the energy balance

	 ε α ν α= ( ) .1 2
2 2Σ〈 〉 + 〈 〉+ 〈 ∂ 〉v v v v 	 (8)

Multiplying the equation (3) by ϖ  and averaging, one 
finds the enstrophy balance

	 〈 〉 〈 〉 + 〈 ∇ 〉φϖ α ϖ ν ϖ= ( ) .2 2 	 (9)

At deriving the relations (8,9) we omitted all complete 
derivatives over time and coordinates. They are zero due to 

stationarity and the independence of the coordinates of all 
single-point moments.

The random force f is assumed to be characterized by a 
correlation length k f

-1 , where k f  is the characteristic wave 
vector of the force. We assume that the following inequality

	 Σ νk f
2 . 	 (10)

is satisfied. The inequality (10) means that the shear flow is 
strong enough to influence essentially the flow fluctuations 
at the pumping scale. Further we consider the case where 
the condition

	 α ν k f
2 . 	 (11)

As it was proposed in Ref. [17], the condition (11) has to 
be satisfied for appearing coherent vortices in two-dimen-
sional turbulence. The opposite case α ν k f

2  needs a spe-
cial analysis. Combining the inequality (10) with Eq. (11), 
we conclude that the inequality Σ α  is satisfied in our 
setup as well.

Our calculations, presented below, are conducted at the 
assumption Σ > 0 . However, all the results derived can 
be easily extended to negative Σ . Say, the simple symme-
try reasoning show that the third moment 〈 〉ϖ3  changes 
its sign at Σ Σ→− . As to the pair correlation function 
〈 〉ϖ ϖ( , ) (0, )t x y , the substitution Σ Σ→−  means that one 
should change the sign of the second component x x2 2→− , 
y y2 2→−  without touching x y1 1, . Similar reasoning en-
ables one to establish the transfor-mation laws of any correla-
tion function at the substitution Σ Σ→− .

3. PERTURBATION THEORY
In the linear approximation the equation (3) is reduced 

to the equation

	 ∂∂ + ϖ φ Σ + α − ν∇
∂

  2
2

1

ˆ ˆ( ) = , = .t x
x

	 (12)

Solutions of the equation (12) without pumping φ  were 
analyzed in Ref. [20]. To find the correlation functions of 
ϖ in the linear approximation, one should solve the equa-
tion (12) for arbitrary φ  and then average the corresponding 
product over the statistics of φ , determined by Eq. (7).

To find corrections to the expressions, obtained in the 
linear approximation, one has to take into account the non-
linear term vÑϖ  in the equation (3). Solving the equa-
tion recursively, one obtains vorticity ϖ  as a series over the 
pumping force f. Averaging the products of vorticity over the 
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statistics of the pumping force in accordance with Eq. (6)  
one arrive at the perturbation series in terms of powers of 
the parameter  ε . Such series produced by the nonlinear 
hydrodynamic interaction was first considered in Ref. [21]. 
The terms of the series can be represented by Feynman dia-
grams, therefore the technique is called Wyld diagrammatic 
technique. Wyld diagrammatic technique can be consistently 
derived from the representation of correlation functions as 
functional integrals over the observed variables and auxiliary 
fields [21]. The integration is performed like in the quantum 
field theory with the weight exp( )- , where   is the ef-
fective action. A detailed description of the technique can be 
found in the review [22].

In our case, the functional integral is written in terms of 
the vorticity ϕ and the corresponding auxiliary field µ. The 
effective action   can be derived from the equation (3) and 
the relation (7). It is written as

	   = ,2 + int 	 (13)

where

	
2

2
2 2 2

ˆ= ( )

( ) ( , ) ( , ),
tdtd x

dtd xd r t t

µ ϖ

ε Ξ µ µ

¶ + +

+ Ñ -

ò
ò x r x r

 
	 (14)

	 int dtd x= .2∫ ∇µ ϖv 	 (15)

The velocity v  in Eq. (15) is implied to be expressed via 
the vorticity ϖ , see Eqs. (4,5).

Let us introduce the pair correlation functions. The pair 
correlation function of the vorticity is written as the following 
functional integral

	 〈 〉 ∫ −ϖ ϖ ϖ µ ϖ ϖ( , ) ( , ) = ( , ) ( , ).t s D D e t sx y x y 	 (16)

We introduce also the following pair average

	 〈 〉 ∫ −ϖ µ ϖ µ ϖ µ( , ) ( , ) = ( , ) ( , ),t s D D e t sx y x y 	 (17)

correlation function (17) determines a response of the system 
to an additional external force. Note that the pair average 
µµ  is zero.

Because of the time homogeneity the pair correlation 
function of vorticity (16) and the Green function (17) depend 
solely on the time difference t s- . Due to the presence of 
the shear flow the space homogeneity is broken in our model. 
Therefore the pair correlation function (16) and the Green 
function (17) depend on both space coordinates. More pre-
cisely, the space homogeneity is broken in the direction of 
the second axis. Therefore the pair correlation function (16) 

and the Green function 17) depend on both second coordi-
nates, x2  and y2 , and on the difference x y1 1- .

Any correlation function of ϕ µ,  can be written as the 
functional integral analogously to the pair correlation func-
tion (16) and the Green function (17). One can evolve the 
perturbation theory for the correlation function expanding 
the weight exp( )-  in the functional integral over the third 
order term int  (15) and calculating the resulting Gaussian 
functional integrals. The integrals are expressed in terms of 
the “bare” correlation functions determined by the quadratic 
term (14) in the effective action:

	 〈 〉 ∫
−

ϖ µ ϖ µ ϖ µ( , ) (0, ) = ( , ) (0, ),0
2t e tx y x yD D
I 	 (18)

	 〈 〉 ∫
−

ϖ ϖ ϖ µ ϖ ϖ( , ) (0, ) = ( , ) (0, ).0
2t e tx y x yD D
I 	(19)

The average of the type 〈 〉ϖ µ  0 is determined by 
Wick theorem [24] and it is equal to the sum of products of 
the pair averages (18,19) organized by all possible pairings.

The procedure enables one to construct the perturbation 
series in the spirit of quantum field theory, see, e. g., [25]. 
To use the perturbation series one should know the “bare” 
correlation functions (18,19). We proceed to calculating the 
correlation functions.

3.1 “Bare” correlation functions
The “bare” correlation functions (18,19) are expressed in 

terms of the Gaussian integrals and can be easily found ex-
plicitly. The expression (14) lead to the following equation 
for the “bare” Green function

	 0
ˆ( ) ( , ) (0, ) = ( ) ( ).t t tϖ µ δ δ¶ + á ñ -x y x y 	 (20)

Remind that any Green function is zero at negative times 
due to causality. Therefore 〈 〉ϖ µ( , ) (0, )t x y  is zero at t < 0. 
The expression for the “bare” pair correlation function can 
be derived using Eq. (19):

	
2 2 2

0

0 0

( , ) (0, ) = 2 ( )

( , ) ( , ) (0, ) ( , ) .

t d d rd z

t

ϖ ϖ ε τ Ξ

ϖ µ τ ϖ µ τ

á ñ - Ñ - ´

´á ñ á ñ
ò òx y r z

x r y z
	(21)

Note that τ < 0 and τ < t  in the integral (21).
Let us pass to Fourier transforms of the pair correlation 

function (21) and the Green function (20). Since they de-
pend on both coordinates, the transform includes two inte-
grals. We use the following definitions:
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	 〈 〉 ∫ ⋅ − ⋅ϖ µ
π

( , ) (0, ) =
(2 )

( , , ),0

2 2

4
t

d kd q
e ti ix y k qk x q yG 	 (22)

	 〈 〉 ∫ ⋅ + ⋅ϖ ϖ
π

( , ) (0, ) =
(2 )

( , , ).0

2 2

4
t

d kd q
e ti ix y k qk x q y 	 (23)

The pair correlation function (23) is invariant under the 
substitution t t→− , x y«  or k q« .

For the Fourier transform G(t, k, q) (22) we derive from 
Eq. (20) the following differential equation

	
( ) ( , , )

(2 ) ( ) ( ).

1
2

1
2

2
2

2

∂
∂
−

∂
∂
+ + + =

= −

t
k

k
k k t

t

Σ α ν ν

π δ δ

G k q

k q

	 (24)

Since the equation (24) is of the first order, it can be eas-
ily solved by the method of characteristics to obtain

	
G( , , ) = (2 ) ( ) ( )

( ) ( , ),

2
1 1

2 2 1

t t k q

k q k t G t

k q

q

π θ δ

δ

− ×

× − + Σ
	 (25)

	G t t t q q t q t( , ) = (
1
3

),2
2 1

2 2
1
2 3q qexp − − + −α ν ν νΣ Σ 	(26)

where θ( )t  is Heaviside step function, θ( ) = 1t  if t > 0  
and θ( ) = 0t  if t < 0 . The function θ( )t  in Eq. (26) re-
flects causality: G = 0 if t < 0.

There is the general property of Green functions

	 G G G( , , ) =
(2 )

( , , ) ( , , ),
2

2
t

d p
t+ ∫τ

π
τk q k p p q 	 (27)

where t > 0, > 0τ . Using Eq. (27), one finds

	 G t G t q q q G( , ) = ( , , ) ( , ).1 2 1+ −τ τ τq qΣ 	 (28)

Of course, one can directly check the relation (28), using 
the expression (26). Note also the expression

	 ∫ ⋅ =

= + −[ ]

d k
i t

t iq x i q q t x G t

2

2

1 1 2 1 2

(2 )
( ) ( , , )

( ) ( ) (

π

θ

exp

exp

k x k qG

Σ ,, )q

	 (29)

for the partial Fourier transform of Eq. (25).
We obtain from Eqs. (21,22,23)

	
F

G G

( , , ) = 2
(2 )

( )

( , , ) ( , , ).

2

2
2t d

d p
p

t

k q p

k p q p

ε τ
π

τ τ

∫ ∫ ×

× + −

Ξ
	 (30)

Here

	 Ξ Ξ( ) = ( ) ( )2k k x x∫ − ⋅d x iexp 	 (31)

is spacial Fourier transform of Ξ( )r .

Substituting the expression (25) into Eq. (30), one finds

	
( , , ) = 2 (2 ) ( ) ( )

( ) ( ) (

2
1 1 2 2 1

2

t k q k q k t

d t

k q

p p

ε π δ δ

τθ τ θ τ

+ + + ×

× +∫
Σ

Ξ )) ( , ) ( , ),G t G+ τ τp p
	 (32)

where

	
p k q

p k t k q q
1 1 1

2 2 1 2 1

= = ,

= ( ) = .

−

+ + − −Σ Στ τ
	 (33)

For the simultaneous correlation function one obtains

	 (0, , ) = (2 ) ( ) ( ),2k q k q qπ δ + F 	 (34)

	 F d G( ) = 2 ( ) ( , ),
0

2 2k p p pε τ τ
∞

∫ Ξ 	 (35)

where p k1 1= , p k k2 2 1= + Στ . Using Eq. (28) one finds 
from Eq. (32)

	 ( , , ) = (2 ) ( ) ( )

( , , ) ( ).

2
1 1 2 2 1

1 2 1

t k q k q tk

G t k k tk F

k q

q

π δ δ+ + + ×

× +

Σ

Σ
	(36)

Of course, for t ® 0  we return to Eq. (33).

3.2 Some “bare” quantities
Let us examine the bare contribution to the nondiagonal 

component of Reynolds stress

	 〈 〉 ∫v v
d kd q k q

k q
1 2 0

2 2

4
1 2
2 2

(0, ) (0, ) =
(2 )

(0, , ),0 0 k q
π

 	

where the factor at   in the integrand is obtained from 
Eq. (4). Substituting here the expressions (33,34) one obtains

	

〈 〉

= ×

×
−

∞

∫ ∫

v v

d
d p

G

p p

1 2 0

0

2

2
2 2

1

(0, ) (0, ) =

2
(2 )

( )[ ( , )]

(

0 0

p p pε τ
π

τΞ

22 1

1
2

2 1
2 2

)

[ ( ) ]
,

+

+ − +

Σ

Σ

p

p p p

τ

τ

	 (37)

where G( , )τ p  is determined by Eq. (26). Here p p k f1 2   
and the characteristic τ  is determined by the denominator, that 
is τ  Σ-1 , and G( , )τ p  can be substituted by unity. Taking 
then the integral over τ,

	
0

2 2 2 2 2

( )

[ ( ) ]
=

1

2 ( )
,

∞

∫
− +

+ − +
d

q p q

q p q q p
τ

τ
τ

Σ
Σ Σ

	

one finds the result [12, 13]
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	 〈 〉 ∫v v
d p

1 2 0

2

2
(0, ) (0, ) =

(2 )
( ) = ,0 0 p

ε
π

ε
Σ

Ξ
Σ

 	 (38)

since Ξ(0) = 1  by definition.
The expressions (33,34) enable one to evaluate the bare 

value of the second moment of the vorticity:

	 〈 〉
∞

∫ ∫ϖ ε τ
π

τ2
0

0

2

2
2 2= 2

(2 )
( ) ( , ).d

d p
p GΞ p p 	

The values of the components of the wave vector p  can 
be estimated as k f . Therefore in the main approximation 
we can keep solely the last term in the exponent in Eq. (26):

	 G p( , ) (
1
3

).2
1
2 3τ ν τp → −exp Σ 	 (39)

Substituting then p p k f1 2  , we end up with the 
estimate

	 〈 〉 −ϖ ε τ τ ν2
0

2 2 2 1/3, = ( ) . k kf f  Σ 	 (40)

Note that

	 Σ τ ν
-1 2 .k f 	

The inequalities are explained by the condition (10). 
Note also that ατ  1 . The inequality is explained by the 
same condition (10) and the condition (11).

One can find the factor in the law (39) for a particular 
Ξ( )p  function. Say, one can take

	 Ξ( ) =
2

(
2

),
2

2

2
p

π
k

p

kf f

exp - 	 (41)

corresponding to

	 Ξ( ) = ( / 2).2 2x exp -k xf 	

Then one finds [26]

	 〈 〉











ϖ

π
ε τ2

0

10/3

2/3
2=

2

3

1
3

7
6

.Γ Γ k f  	 (42)

The result of the calculation confirms the general esti-
mate (39).

Analogously, the bare pair correlation function can be 
evaluated [26]. The simultaneous correlation function (33) 
is determined by F ( )k that is given by the integral (34) If

	 k k k k kf f f 1
3

2/ , , ν Σ 	

then the characteristic time in the integral (34) is determined 
by k1 , see Eq. (38), and we obtain

	 F k k kf ετ
2 4/3

1
2/3.- - 	 (43)

Thus for k k k f1 2,   we have F  ετ  and for 
k k k kf f1

3
2/ , ν Σ  we have F k f ε ν/ 2 . The ex-

pression (41) gives the universal scaling behavior between 
the limit cases.

One can obtain a convenient expression for F ( )k  using 
the particular form (40) of the pumping correlations. If

	 k k kf f 1
3 / , ν Σ 	

then

	 F
k

k k

k

kf f

( ) = (
3
2

) (
4
3

)
4

(
2

)1/3
2

4/3
1
2/3

2

2
k Γ

πετ exp - 	 (44)

in accordance with the law (41). Fourier transform of the 
expression (42) enables one to restore the properties of the 
simultaneous pair correlation function in real space exam-
ined in Ref. [26].

3.3 Interaction corrections
As we explained, interaction corrections to the bare val-

ues of the correlation functions has to be calculated in the 
framework of the perturbation series. It is constructed by the 
expansion of the factor exp( )2 + int  in the series over 
int  (15) in the corresponding functional integral. Each term 
of the expansion can be found analytically, using Wick theo-
rem [23]. It is a multiple integral over times and wave vectors 
of some expression determined by the “bare” pair correla-
tion functions, Green functions and factors corresponding 
to converting ϖ ® v . Note that to increase the order of the 
perturbation series by unity, one has to take into account two 
additional terms of the expansion over int .

The terms of the perturbation series can be represented 
by Feynman diagrams. The diagrams determined the first 
order correction to the pair correlation function of vorticity 
are depicted in Fig. 1. Higher order corrections correspond 
to more complicated diagrams. An example of more com-
plicated diagram determining the second order correction to 
the pair correlation function of vorticity is depicted in Fig. 2. 
The order of the perturbation series corresponds to the num-
ber of loops of the diagrams. Say, the first order correction to 
the pair correlation function of vorticity is determined by the 
one-loop diagrams, see Fig. 1, and the second order correc-
tion to the pair correlation function of vorticity is determined 
by the two-loop diagrams, see Fig. 2.

All lines on the diagrams are thought to be consistent of two 
segments, solid segments correspond to the field ϖ  whereas 
dashed segments correspond to the field µ. Thus, a combined 
solid-dashed line designates the Green function G( , , )t k q  
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and a solid line designate the pair correlation function 
( , , )t k q . Two solid segments and one dashed segment are 
attached to each vertex in accordance with the structure of Iint 
(15). The factor corresponding to each vertex is

	 1
2

(
1 1

)( ),
2 2 2 1 1 2

q k
q k q k- - 	 (45)

where k q,  are wave vectors of the solid segments attached 
to the vertex.

To construct the analytical expression, corresponding to 
a given diagram, one should fix the corresponding combina-
torial factor, take the product of the Green functions, of the 
pair correlation functions and of the vertex factor and inte-
grate the result over “internal” wave vectors and times. The 
integration should be performed at the condition of the wave 
vector conservation at each vertex: the sum of the wave vec-
tors of three segments attached to the vertex has to be zero. 
It is interesting that the corrections to G, F reproduce the 
structure of the bare correlation functions (25,35) with the 
same δ -functions. Thus, one can extract from the diagrams 
corrections to the functions G t( , )k , F ( )k . The property is 
a consequence of assumed short correlation in time of pump-
ing. That is why we have chosen the model, since the prop-
erty simplifies essentially concrete calculations.

The perturbation series is presented by a set of diagrams 
with different number of loops. Enhancement by unity of the 
number of the loops means adding one F- line, one G-line 
and two vertices to the diagram. Note that F contains ε  as 
a factor, see Eq. (34), whereas G and the factor (43), cor-
responding to a vertex, do not. Therefore one can say, that 
the perturbation series is a series over ε . The dimensionless 
parameter controlling the perturbation series is

	 β
ε
ν

= .
2Σ

	 (46)

For different objects, the parameter (44) can be cor-
rected by factors depending on the dimensionless quantities 
νk f

2 / Σ , k k f1 / , k k f2 / . Any case, the parameter (44) 
should be small for validity of the perturbation series.

Note that zero contribution to the third moment of vor-
ticity 〈 〉ϖ3  is zero. The first non-vanishing contribution to 
〈 〉ϖ3  appears in the first order in the perturbation theory. 
Let us stress that it is determined by a “tree” diagram, where 
loops are absent. Thus, the contribution needs a special anal-
ysis made in Ref. [26]. The result is

	 〈 〉ϖ
ε

ν
3

2 2

2


k f

Σ
	 (47)

a logarithmic factor. The quantity (45) satisfies the relation

	 〈 〉 〈 〉ϖ β ϖ3 2 2
0

3( ) , 	 (48)

see Eq. (39). The factor β  in Eq. (46) is a manifestation of 
the fact that the main contribution to the third moment of 
vorticity appears in the first order of the perturbation series.

4. CORRECTIONS TO THE PAIR CORRELATION 
FUNCTION OF VORTICITY

We proceed to calculating corrections to the pair correla-
tion function. The calculation reveals the peculiarities of the 
perturbation series and demonstrates some universal features, 
that can be used for evaluating more complicated objects. We 
concentrate on analyzing the simultaneous correlation func-
tion, depending solely on the coordinate difference. The cor-
rection is written as

	 δ ϖ ϖ
π

δ〈 〉 ∫( ) ( ) =
(2 )

( ),
2

2
x 0 k

d k
F 	 (49)

where δF ( )k  is the correction to the function F(k) intro-
duced by Eq. (35).

In the first order of the perturbation series the correc-
tion δF ( )k  is determined by the diagrams depicted in Fig. 1. 
Let us stress that we deal with nonsimultaneous correlation 

Fig. 2. Two-loop diagram representing a second-order 
correction to the pair correlation function.

Fig. 1. Feynman diagrams representing first corrections 
to the simultaneous pair correlation function.

a
0 0−t −t− s

−k kq

p

m

b

0 0−t −t− s

−k k−q

−p

m
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functions inside the diagrams. Therefore one should use the 
general functions G( , , )t k q , ( , , )t k q , see Eqs. (25,26,35). 
The analytical expressions for the contributions to δF ( )k , 
corresponding to the diagrams a and b in Fig. 1, are

	

F dt ds
d m

G t k k tk G s t

V

a( ) = 2
(2 )

( , , ) ( , )

(

0 0

2

2

1 2 1

k

q

m

∞ ∞

∫ ∫ ∫ ×

× − − − + ×

×

π

Σ

,, ) ( , ) ( , ) ( ) ( )

(
1 1

)( )
2 2 2 1 1 2

p p m m p

m p

G s G s F F

m p m p

×

× − −

	 (50)

and

	

F dt ds
d m

G t k k tk G s t

V

b( ) = 4
(2 )

( , , ) ( , )

(

0 0

2

2

1 2 1

k
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− ×

× − − − + ×

×

∞ ∞
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Σ

mm p p m m q

m q

, ) ( , ) ( , ) ( ) ( )

(
1 1

)( ),
2 2 2 1 1 2

G s G s F F

m q m q

×

× − −

	 (51)

where
	 q k q k t s k1 1 2 2 1= , = ( ) ,+ +Σ 	

	 p k m p k m t s k1 1 1 2 2 2 1= , = ( ) ,− − + +Σ 	

and V  is the factor (43) corresponding to the left vertices:

V

m m sm p p sp
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1
2

1
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1
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2 1
2

1
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2 1
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

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
×

×

Σ Σ

mm p m p2 1 1 2).−

	 (52)

The expressions are written in accordance with the gen-
eral rules of reading diagrams.

The integrand in Eq. (48) is invariant under the permuta-
tion m p« . Therefore one can substitute

	 1 1 2
.

2 2 2m p m
− → 	 (53)

After the substitution we find

	

δ
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F F F dt ds
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	 (54)

where p q m= - .

4.1 Intermediate region of wave vectors
Let’s examine the case

	
νk

k k k kf
f f

2

1 2, ,
Σ
� � ∼ 	 (55)

corresponding to the universal bare behavior (41). There are 
some regions of the integration over m1  in the integral (51) 
that have to be examined to extract the main contribution to 
the correction δF .

Let us examine the region of the integration
	 m m k f1 2 .  	
then
	 m q m q m q p m2 1 1 2 1 2 1 1,− ≈ ≈ − 	
and

    

δ
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−

	 (56)

Here the integration over s  is determined by the denomi-
nators and s  Σ-1 . Thus dependencies on s everywhere ex-
cept the denominators can be neglected: in the Green func-
tions s  Σ-1  gives small corrections and s enters to q2 , p2  
with the small factor k1 . Since s enters the denominator via 
the factor m s1  and all other factors are functions of m1

2 , we 
may integrate over m1  from 0 to ¥  and over s from −∞  
to ¥ . Next,

	
−∞

∞

∫ + −
ds

m m sm m

1

( )
= .

1
2

2 1
2

1
2Σ Σ

π 	

Thus, the integrals over s of the difference of the terms 
depending on m and p cancel each other. Thus, the main 
contribution to the correction δF  from the region of the 
integration m m k f1 2   is absent.

Therefore the main contribution to the integral (51) is 
gained from the region m k1 1  and m k f2  . Then the 
characteristic times are determined by F ( )p , F ( )q , that is

	 s t
k

k
s t kf

f, , , ( ) .
1

1 2 1∼ � �
Σ

Σ- -ν 	 (57)

The estimates (53) explain the relation m k1 1  since 
m1  is determined by the denominators of V ( , )m p  (50). 
The estimates (53) mean that all the Green functions in Eq. 
(51) can be substituted by unity. Thus we arrive at
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where p q m= - .
The inequalities m m1 2  and p p1 2  enables one to 

substitute

	
V m p m p

m
m sm

p
p sp

( , )
2

( )

1
( )

1
( ) ,

2 1 1 2

1
2 1

1
2 1

m p → − ×

× − − −












π

δ δΣ Σ
	 (59)

as it follows from Eq. (50). Then we find from Eqs. (50,54)
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One can rewrite the expression (56) as
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where

	 m sm q k q k t s k2 1 1 1 2 2 1= , = , = ( ) ,Σ Σ+ + 	

	 p k m p k sm t s k1 1 1 2 2 1 1= , = ( ) .− − + +Σ Σ 	

The signs of k k1 2,  are arbitrary here.
Let us check that the integral (57) converges at m k1 1 . 

Then in the main approximation

	 q k tk p m p q m2 2 1 1 1 2 2 2= , = , = .+ − −Σ

Passing from the integration over s to the integration over 
m sm2 1= Σ , we find
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Shifting the integral over m2  in the second term in the 
square brackets, we arrive at zero main contribution to the 
integral. Next terms of the expansion of the integrand in 
Eq. (57) over the parameter k m1 1/  give converging integrals.

The expression (57) enables one to evaluate the correc-
tion δF in the region (52). Combining the estimates m k1 1 , 
(53), and the relation (41), one finds

	 δ β
ν

F
k

k
Ff( ) ( ) ( ),

3

1

2/3k k

Σ
	 (63)

where β  is defined by Eq. (44). The factor νk kf
3

1/ Σ  is small 
for the considered region (52). It becomes of order unity at 
k k f1

3 / ν Σ  where the relative correction to F (58) is esti-
mated as β (44). Let us find the correction δF using the par-
ticular function (42). Since δF(k) is symmetric under k → −k,  
without loss of generality, we assume k1 > 0 whereas k2 is as-
sumed to have an arbitrary sign. We substitute the expression 
(42) into Eq. (57) and pass to the dimensionless variables κ, 
τ, σ, μ in accordance with
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Then we arrive at
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The integral (61) found numerically is plotted in Fig. 3.
Note that in accordance with Eqs. (41,60) δF k∝ −

1
4/3 .

Therefore the integral over k1  in the expression for the 
correction to the second moment of vorticity

	 δ ϖ
π

δ〈 〉 ∫2
2

2
=

(2 )
,

d k
F 	 (67)

is sitting on the low limit of the interval (52), k k f1
3 / ν Σ . 

Therefore at calculating δ ϖ〈 〉2  one cannot use the estimate 
(41) or the expression (42), and one should return to the gen-
eral expression for the pair correlation function.

4.2 Correction to the moments
Integrating the expression (51) over k and passing to the 

integration over p, one finds
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where q p m= + . As for the pair correlation function in 
the region (52), in the integral (62) m m1 2  and p p1 2 . 
Therefore one can use the substitution (55).

Performing the substitution (55) in Eq. (62), we get
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The estimates for the variables in the integral (63) are

	 s t
k

p m k
f

f   

1
, ,

2 2 2
ν

	

	 p k
k

F
k

f

f
1 1

3

2
, ,  

ν ε
νΣ

	

where we assumed α ν k f
2 . Then
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where β  is defined by Eq. (44).
Analogously, one can find the estimate for the non-diag-

onal component of Reynolds stress tensor

	 δ
ε

β
ν

〈 〉 〈 〉v v
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where 〈 〉v v1 2 0 is given by Eq. (37). We see in the estimate 
(65) the additional smallness νk f

2 / Σ . It is in accordance 
(8) at a α ν k f

2 , that the correction δ〈 〉v v1 2  to the value 
ε / Σ  should contain an extra factor ν / Σ , in comparison 
with the correction δ ϖ〈 〉2 . Then we obtain Eq. (65) from 
Eq. (64).

4.3 Higher order corrections to the pair 
correlation  function

Each Feynman diagram has an amount of loops. For ex-
ample, the diagrams depicted in Fig. 1 are characterized by 
one loop, whereas the diagram depicted in Fig. 2 contains 
two loops. The number of loops correspond to the order of 
controlling the loop expansion for the pair correlation func-
tion in the region (52). Passing from the diagram with n 
loops to the diagram with n + 1 loops, we get two additional 
vertices, one additional G-line and one additional F-line. We 
get also two additional integrations over times (related to the 
two additional vertices) and an additional integration over a 
wave vector.

One can choose for the integration the wave vectors 
m belonging to one of the vertices. Then the wave vectors 

Fig. 3. The integral (61) as a function of 2| | / fk k  at posi-
tive 2 1/k k  (blue line) and negative 2 1/k k  (yellow line).
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belonging to the other additional vertex are expressed via the 
times and the wave vectors m. Then the corresponding factor 
(43) looks like in Eq. (50) and can be substituted as in Eq. (55).  
The same logic as for the first correction leads to the conclu-
sion that the factor carrying by the additional loop is

	 β
ν

( ) .
3

1

2/3k

k
f

Σ
	 (72)

Thus, it is (72) that is the small parameter that justifies 
the perturbation theory.

If we consider corrections to moments such as δ ϖ〈 〉2  or 
δ〈 〉v v1 2 , then the integrals that determine the corrections are 
accumulated in the region of characteristic values ​​of the first 
components of the wave vectors  νk f

3 / Σ  corresponding 
to the lower boundary of the region (55). There, the small 
parameter of the series of perturbations is equal to β . There-
fore, we can estimate the nth order corrections to the second 
moment as follows:
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However, you should be careful. <<Bare>> contributions 
to moments (38), (40) do not obey the logic established for 
(73). Consequently, estimates (73) do not cover expressions 
(38), (40) for n = 0; they turn out to be much larger than 
estimates (73) for n = 0.

5. CONCLUSION
We examined statistical properties of the random flow 

excited by a relatively weak random force on top of a strong 
static shear flow. We established that the small parameter 
controlling the perturbation series in the framework of our 
model is β (44). Note that the parameter is independent of 
the correlation length of the pumping force. Corrections 
to the second moment are determined by the wave vectors 
where the second component is of the order of the wave 
vector of pumping 

2 fk k

, whereas the first component is 
much smaller, 3

1 /fk kν Σ

. Thus the main contribution to 
the corrections are supplied by non-isotropic blobs of vortic-
ity, strongly elongated along the shear velocity.

It is worth noting that the contribution of interaction with 
fluctuations at the pump length, where both components of 
the wave vectors are estimated as k f , contains cancellations, 
leading to effective locality of interaction in k-space. Such 
locality justifies the universality of the behavior of correlation 

functions in the domain (52). Similar cancellations occur 
in the perturbative approach to three-dimensional turbu-
lence [27, 28].

Our investigation was motivated by examining the struc-
ture of the coherent vortices generated as a consequence of 
the inverse cascade in two-dimensional turbulent flows in fi-
nite boxes. One can estimate the parameter β  for the flat 
mean polar velocity profile U = 3 /ε α  [11] where ε  is 
the energy pumped to the fluid per unit mass and α  is the 
bottom friction coefficient. Then the local mean shear rate is 

	 Σ  ε α1/2 1/2 1,- -r 	

where r  is the distance from the vortex center. Thus, the 
parameter β  (44) is

	 β α ν r 2 1.- 	

Since the approximation of the local mean shear flow is 
correct at k rf  1  (where k f  is the characteristic wave 
vector of pumping), the parameter β  can be small in some 
region of distances if a α ν k f

2 . The condition can be easi-
ly achieved in numerical simulations, but it is hardly achieved 
in laboratory experiments with thin fluid films. Note, how-
ever, that our model by itself can be realized experimentally, 
if besides the small-scale random pumping some strong shear 
flow is produced in the fluid. In addition, in three-dimen-
sional systems with strong rotation, turbulence is effectively 
two-dimensioned [29]. As a result, column vortices may oc-
cur, which are almost uniform along the axis of rotation [30]. 
For such systems, the effective coefficient of friction can be 
significantly less than the viscous dissipative parameter.

Returning to the coherent vortices, we conclude that it 
interesting to analyze the case where the parameter β  is not 
small. In the case we encounter the situation of strong inter-
action typical for turbulent systems. The case needs a special 
investigation which is outside the current work. Note, how-
ever, that the energy balance (8) is an exact relation valid 
for the strong interaction regime as well. Thus, we expect 
that the non-diagonal component of Reynolds stress tensor 
is equal to ε / Σ  (at large enough shear rate Σ ) even in the 
strong interaction regime. Therefore the flat velocity profile 
U = 3 /ε α  is universal being independent of the charac-
ter of the interaction.

In our calculations, we used the specific model where the 
pumping force is short correlation in time. It enables one to 
relieve the calculations in comparison with the general case 
of pumping with finite correlation time. However, we hope 
that the general consequences obtained in the framework of 
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our particular model are universal and are valid for the gen-
eral case. Say, the energy balance (8) is independent of the 
model. Therefore the conclusions concerning the relation 
between the corrections to the second moment of vorticity 
and to the non-diagonal component of Reynolds stress ten-
sor (see Subsection IV B) are universal as well.
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