Keywords
fullerene
graphene quantum dot
intense wave
many particle column interactions
Abstract
Investigation of high‑order harmonic generation (HHG) in the large fullerene C180 molecule under intense laser field is presented. To model the С180 molecule and its interaction with the laser field, we employ the tight‑binding mean‑field approach. Our detailed analysis of the HHG power spectrum reveals the multiphoton resonant nature of harmonic generation, shedding light on the underlying quantum processes involved. We examine the dependence of cutoff harmonics on both laser intensity and frequency, providing valuable insights into the optimal conditions for enhancing HHG in C180. We demonstrate that the C180 molecule exhibits a significantly stronger high harmonic intensity compared to the more widely studied C60 fullerene.
References
1.
P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
2.
Lewenstein M., Balcou P., Ivanov M.Y., L’Huillier A., Corkum P.B.
Physical Review A,
1994
3.
H. K. Avetissian, Relativistic Nonlinear Electrody‑namics: The QED Vacuum and Matter in SuperStrong Radiation Fields, 88 (Springer, New York, 2015).
4.
5.
6.
Falcao E.H., Wudl F.
Journal of Chemical Technology and Biotechnology,
2007
7.
Tiwari S.K., Kumar V., Huczko A., Oraon R., Adhikari A.D., Nayak G.C.
Critical Reviews in Solid State and Materials Sciences,
2016
8.
R. E. Smalley, Reviews of Modern Physics 69, 723 (1997).
9.
H. W. Kroto, J. R. Heath, S. C. O’Brien, et al., Nature 318, 162 (1985).
10.
H. Kroto and K. McKay, Nature 331, 328 (1988).
11.
York D., Lu J.P., Yang W.
Physical Review B,
1994
12.
G. E. Scuseria, Chem. Phys. Lett. 243, 193 (1995).
13.
G. E. Scuseria, Science 271, 942 (1996).
14.
S. Itoh, P. Ordejon, D. A. Drabold, and R. M. Martin, Phys. Rev. В 53, 2132 (1996).
15.
С. H. Xu and G. E. Scuseria, Chem. Phys. Lett. 262, 219 (1996).
16.
Dunk P.W., Kaiser N.K., Hendrickson C.L., Quinn J.P., Ewels C.P., Nakanishi Y., Sasaki Y., Shinohara H., Marshall A.G., Kroto H.W.
Nature Communications,
2012
17.
J. W. Martin, G. J. McIntosh, R. Aru, et al., Carbon 125, 132 (2017).
18.
Wang S., Chang Q., Zhang G., Li F., Wang X., Yang S., Troyanov S.I.
Frontiers in Chemistry,
2020
19.
E. Ghavanloo, H. Rai‑Tabar, A. Kausar, et al., Physics Reports 996, 1 (2023).
20.
T. D. Donnelly, T. Ditmire, K. Neuman, et al., Phys. Rev. Lett. 76, 2472 (1996).
21.
C. Vozzi, M. Nisoli, J. Caumes, et al., Appl. Phys. Lett. 86 (2005).
22.
Smirnova O., Mairesse Y., Patchkovskii S., Dudovich N., Villeneuve D., Corkum P., Ivanov M.Y.
Nature,
2009
23.
B. Avchyan, A. Ghazaryan, K. Sargsyan, and К. V. Sedrakian, JETP 134, 125 (2022).
24.
10.1117/1.JNP.16.036001
25.
Avchyan B.R., Ghazaryan A.G., Sargsyan K.A., Sedrakian K.V.
JETP Letters,
2022
26.
Gnawali S., Ghimire R., Magar K.R., Hossaini S.J., Apalkov V.
Physical Review B,
2022
27.
Ganeev R.A., Bom L.B., Abdul-Hadi J., Wong M.C., Brichta J.P., Bhardwaj V.R., Ozaki T.
Physical Review Letters,
2009
28.
Ganeev R.A., Elouga Bom L.B., Wong M.C., Brichta J.-., Bhardwaj V.R., Redkin P.V., Ozaki T.
Physical Review A,
2009
29.
Zhang G.P.
Physical Review Letters,
2005
30.
Zhang G.P., George T.F.
Physical Review A,
2006
31.
Zhang G.P., Bai Y.H.
Physical Review B,
2020
32.
Avetissian H.K., Ghazaryan A.G., Mkrtchian G.F.
Physical Review B,
2021
34.
R. L. Martin and J. P. Ritchie, Phys. Rev. В 48, 4845 (1993).
35.
G. Zhang, Phys. Rev. В 56, 9189 (1997).
36.
P. W. Fowler and D. E. Manolopoulos, An atlas of fullerenes (Courier Corporation, New York, 2007).
37.
Schwerdtfeger P., Wirz L., Avery J.
Journal of Computational Chemistry,
2013
38.
Zhang G.P., Si M.S., Murakami M., Bai Y.H., George T.F.
Nature Communications,
2018