Home / Publications / RESONANT OPTICAL PUMPING OF THE ISOMER 229Th WITH ENERGY 8 eV

RESONANT OPTICAL PUMPING OF THE ISOMER 229Th WITH ENERGY 8 eV

1 Mendeleev Institute for Metrology
2 National Research Center “Kurchatov Institute” – Petersburg Nuclear Physics Institute
Published 2023-10-24
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Karpeshin F. F., Trzhaskovskaya M. RESONANT OPTICAL PUMPING OF THE ISOMER 229Th WITH ENERGY 8 eV // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 2. pp. 135-141.
GOST all authors (up to 50) Copy
Karpeshin F. F., Trzhaskovskaya M. RESONANT OPTICAL PUMPING OF THE ISOMER 229Th WITH ENERGY 8 eV // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 2. pp. 135-141.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240201e5
UR - https://jetp.colab.ws/publications/10.31857/S00444510240201e5
TI - RESONANT OPTICAL PUMPING OF THE ISOMER 229Th WITH ENERGY 8 eV
T2 - Journal of Experimental and Theoretical Physics
AU - Karpeshin, F. F.
AU - Trzhaskovskaya, M.B.
PY - 2023
DA - 2023/10/24
PB - Nauka Publishers
SP - 135-141
IS - 2
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Karpeshin,
author = {F. F. Karpeshin and M.B. Trzhaskovskaya},
title = {RESONANT OPTICAL PUMPING OF THE ISOMER 229Th WITH ENERGY 8 eV},
journal = {Journal of Experimental and Theoretical Physics},
year = {2023},
volume = {165},
publisher = {Nauka Publishers},
month = {Oct},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240201e5},
number = {2},
pages = {135--141},
doi = {10.31857/S00444510240201e5}
}
MLA
Cite this
MLA Copy
Karpeshin, F. F., and M.B. Trzhaskovskaya. “RESONANT OPTICAL PUMPING OF THE ISOMER 229Th WITH ENERGY 8 eV.” Journal of Experimental and Theoretical Physics, vol. 165, no. 2, Oct. 2023, pp. 135-141. https://jetp.colab.ws/publications/10.31857/S00444510240201e5.
Views / Downloads
5 / 35

Keywords

frequency standard
isomer 229mTh
nuclear-optical clock
resonance conversion

Abstract

The most likely candidate for the role of a nuclear optical standard is the isomer of the nuclear isotope 229mTh with an energy of 8.338 eV. The possibility to specify the value of this energy by resonant optical pumping through an electron bridge was discussed. Proper use of the natural atomic linewidths, which are many orders of magnitude larger than the natural nuclear isomeric linewidth, is critical. Recent studies have shown that broadening due to internal conversion in neutral thorium atoms leads to a gain in scan time of nine orders of magnitude, facilitating the search for electron-nuclear resonance to a feasible level. The reverse resonance conversion method proposed in this article is applicable to ionized thorium atoms. It has the potential to improve experimental efficiency by orders of magnitude. The implementation of this method requires simultaneous excitation of the nucleus and electron shell in the final state. The causal connection between this principle and the solution to the thorium riddle is shown.

References

.
S. Kraemer, J. Moens, M. Athanasakis-Kaklamanakis et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706 (2023). https://doi.org/10.1038/s41586-023-05894-z
.
D.F. Zaretsky, F. F. Karpeshin. Mesoatomic X-ray radiation of muons on fragments of instantaneous fission. Sov. J. Nucl. Phys. 29, 151 (1979).
.
B.A. Zon, F. F. Karpeshin. Acceleration of the decay of 235mU by laser-induced resonant internal conversion. Sov. Phys. JETP, 70, 224 (1990).
.
V. A. Krutov. Ann. Phys. (Leipzig), 21, 291 (1968); JETP Lett. 52, 584 (1990).
.
D. P. Grechukhin, A. A. Soldatov. Sov. J. Nucl. Phys. 23, 273 (1976).
.
D. Kekez et al. Phys. Rev. Lett. 55, 1366 (1985).
.
C. Röosel, F. F. Karpeshin, P. David et al. Experimental evidence for muonic X-rays from fission fragments. Z. Phys. A 345, 425 (1993).
.
F. F. Karpeshin, M. R.Harston, F. Attallah, J.F.Chemin, J. N.Scheurer, I. M.Band, M. B. Trzhaskowskaya. Subthreshold internal conversion to bound states in highly-ionized 125Te ions, Phys. Rev. C 53 1640 (1996).
.
E.V. Tkalya. JETP Lett. 55, 216 (1992); Nucl. Phys. A 539, 209 (1992).
.
P. V. Borisyuk, N. N. Kolachevsky, A. V. Taichenachev, E. V. Tkalya, I. Yu. Tolstikhina, and V. I. Yudin. Excitation of the low-energy 229mTh isomer in the electron bridge process via the continuum. Phys. Rev. C 100, 044306 (2019).
.
A.Ya. Dzublik. Quasiclassical theory of 229mTh excitation by laser pulses via electron bridges. Phys. Rev. C 106, 064608 (2022).
.
F.F.Karpeshin, I. M.Band and M. B. Trzhaskovskaya. Subthreshold conversion in 125Te45+, JETP, 89, 845 (1999).
.
F. F. Karpeshin, M. B. Trzhaskovskaya and Yu. P. Gangrsky. BIC in H-like ions. JETP, 99, 286 (2004).
.
F. F. Karpeshin, I. M. Band, and M.B. Trzhaskovskaya. 3.5-eV isomer of 229mTh: how it can be produced. Nucl. Phys. A 654, 579 (1999).
.
L. Von der Wense, B. Seiferle, M. Laatiaoui et al. Direct detection of the 229Th nuclear clock transition, Nature, 47, 533 (2016).
.
E. Peik, M. Okhapkin. Nuclear clocks based on resonant excitation of γ-transitions, C. R. Physique 16, 516 (2015).
.
L. von der Wense and Z. Chuankun. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal- conversion-based solid-state nuclear clock. Eur. Phys. J. Ser. D 74, 146 (2020).
.
L. F. Vitushkin et al. Two mechanisms of exciting the thorium 229Th nucleus by a laser as a prologue to the creation of nuclear-optical clocks. Legal and Applied Metrology. 2022. Issue 3. P. 9.
.
B. Seiferle et al. Energy of the 229Th nuclear clock transition. Nature 573, 243 (2019).
.
A. Kramida and Yu. Ralchenko. J. Reader and NIST ASD Team (2022), NIST Atomic Spectra Database (ver. 5.10), https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD; DOI: https://doi.org/10.18434/T4W30F.
.
F.F. Karpeshin, S. Wycech, I. M. Band, M. B. Trzhaskovskaya, M. Pfuützner and J. Zylicz. Rates of transitions between the hyperfine-splitting components of the ground-state and the 3.5 eV isomer in 229Th89+. Phys. Rev. C 57, 3085 (1998).
.
F.F. Karpeshin and L.F. Vitushkin. On the problems of creating a nuclear-optical frequency standard based on 229Th. https://doi.org/10.48550/arXiv.2307.08711
.
I. M. Band and M. B. Trzhaskovskaya. Internal Conversion Coeffcients for Low-Energy Nuclear Transitions. At. Data Nucl. Data Tables 55, 43 (1993).
.
S. G. Porsev et al. Excitation of the Isomeric 229mTh Nuclear State via an Electronic Bridge Process in 229Th+. Phys. Rev. Lett. 105, 182501 (2010).
.
F. F. Karpeshin and M. B. Trzhaskovskaya. Impact of the ionization of the atomic shell on the lifetime of the 229mTh isomer. Nucl. Phys. A 969, 173 (2018).
.
Karpeshin F. F. and Trzhaskovskaya M. B. A proposed solution for the lifetime puzzle of the 229mTh+ isomer, Nucl. Phys. A 1010, 122173 (2021).