Home / Publications / STRONG EXCITATION OF THE ELECTRONIC SUBSYSTEM OF GOLD BY AN ULTRASHORT LASER PULSE AND RELAXATION PROCESSESNEAR THE MELTING TEMPERATURE

STRONG EXCITATION OF THE ELECTRONIC SUBSYSTEM OF GOLD BY AN ULTRASHORT LASER PULSE AND RELAXATION PROCESSESNEAR THE MELTING TEMPERATURE

N.A. Inogamov 1, 2, 3 *
N.A. Inogamov
V.A. Khokhlov 1, 3
V.A. Khokhlov
Yu.V. Petrov 1
Yu.V. Petrov
M. A. Ovchinnikov 3
M. A. Ovchinnikov
S. I. Ashitkov 3
S. I. Ashitkov
2 The Federal State Unitary Enterprise Dukhov Automatics Research Institute (VNIIA)
Published 2023-10-10
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Inogamov N. et al. STRONG EXCITATION OF THE ELECTRONIC SUBSYSTEM OF GOLD BY AN ULTRASHORT LASER PULSE AND RELAXATION PROCESSESNEAR THE MELTING TEMPERATURE // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 2. pp. 159-183.
GOST all authors (up to 50) Copy
Inogamov N., Khokhlov V., Romashevskiy S., Petrov Y., Ovchinnikov M. A., Ashitkov S. I. STRONG EXCITATION OF THE ELECTRONIC SUBSYSTEM OF GOLD BY AN ULTRASHORT LASER PULSE AND RELAXATION PROCESSESNEAR THE MELTING TEMPERATURE // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 2. pp. 159-183.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240203e4
UR - https://jetp.colab.ws/publications/10.31857/S00444510240203e4
TI - STRONG EXCITATION OF THE ELECTRONIC SUBSYSTEM OF GOLD BY AN ULTRASHORT LASER PULSE AND RELAXATION PROCESSESNEAR THE MELTING TEMPERATURE
T2 - Journal of Experimental and Theoretical Physics
AU - Inogamov, N.A.
AU - Khokhlov, V.A.
AU - Romashevskiy, Sergey
AU - Petrov, Yu.V.
AU - Ovchinnikov, M. A.
AU - Ashitkov, S. I.
PY - 2023
DA - 2023/10/10
PB - Nauka Publishers
SP - 159-183
IS - 2
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Inogamov,
author = {N.A. Inogamov and V.A. Khokhlov and Sergey Romashevskiy and Yu.V. Petrov and M. A. Ovchinnikov and S. I. Ashitkov},
title = {STRONG EXCITATION OF THE ELECTRONIC SUBSYSTEM OF GOLD BY AN ULTRASHORT LASER PULSE AND RELAXATION PROCESSESNEAR THE MELTING TEMPERATURE},
journal = {Journal of Experimental and Theoretical Physics},
year = {2023},
volume = {165},
publisher = {Nauka Publishers},
month = {Oct},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240203e4},
number = {2},
pages = {159--183},
doi = {10.31857/S00444510240203e4}
}
MLA
Cite this
MLA Copy
Inogamov, N.A., et al. “STRONG EXCITATION OF THE ELECTRONIC SUBSYSTEM OF GOLD BY AN ULTRASHORT LASER PULSE AND RELAXATION PROCESSESNEAR THE MELTING TEMPERATURE.” Journal of Experimental and Theoretical Physics, vol. 165, no. 2, Oct. 2023, pp. 159-183. https://jetp.colab.ws/publications/10.31857/S00444510240203e4.
Views / Downloads
5 / 16

Keywords

electron thermal conductivity
electron-phonon coupling parameter
femtosecond lasers
gold
two-temperature state

Abstract

Femtosecond lasers are widely used in scientific research and modern technologies. When applied to metals, ultrashort optical laser radiation produces a pronounced two-temperature state with hot electrons: Te >> Ti, where Te and Ti are the temperatures of the electron and lattice subsystems. Our experimental measurements were carried out using phase-sensitive (lock-in) detection technique on bulk and film (100 nm thick) gold targets. Due to the fact that in our experiments the repetition rate of heating (pump) pulses was reduced to 31 Hz, we were able to reach lattice temperatures near the melting point of gold. This occurs at the exit of the two-temperature stage in bulk targets. As we know, at the end of this stage, the temperatures converge, Te ≈ Ti. In bulk targets, at the highest fluences we achieved, the peak electron temperature increases to values around 20 kK. Theoretical calculations available in the literature give certain dependences for the electron-phonon coupling parameter a and the electron thermal conductivity coefficient k; they are the key parameters that characterize the two-temperature state. Our experiments showed that in the range of fluences with peak temperatures Te above 10 kK and up to 20 kK, the measured values of a and k are significantly lower than than the values given by theories. Below this range of fluences, i.e., when the peak Te is less than 10 kK, our measured values are in agreement with previous data. This is the first result of the paper. In addition, it is shown that at one-temperature stage, when the thermal energy stored in the electrons is very small, there is a significant influence of the fundamentally two-temperature coefficient a on heat transfer from the skin layer. This is due to the relatively small thickness of the heated layer, which is of the order of 200-300 nm in gold.

The bibliography includes 62 references

[1-62]

References

1.
A.B. Cherepakhin, D. V. Pavlov, I. I. Shishkin et al., Appl. Phys. Lett. 117, 041108 (2020).
2.
S. I. Kudryashov, A. A. Samokhvalov, Ya. D. Golubevet al., Appl. Surf. Sci. 537, 147940 (2021).
3.
K. Kaleris, E. Kaniolakis-Kaloudis, E. Kaselouriset al., Appl. Phys. A 129, 527 (2023).
4.
S. A. Romashevskiy, A. I. Ignatov, V. V. Zhakhovskyet al., Appl. Surf. Sci. 615, 156212 (2023).
5.
T. Kawashima, T. Sano, A. Hirose et al., J. Mater.Process.Technol. 262, 111 (2018).
6.
U. Trdan, T. Sano, D. Klobcar et al., Corrosion Sci.143, 46 (2018).
7.
N. A. Inogamov, E. A. Perov, V. V. Zhakhovsky et al.,JETP Lett. 115, 71 (2022).
8.
V. A. Khokhlov, V. V. Zhakhovsky, N. A. Inogamovet al., JETP Lett. 115, 523 (2022).
9.
V. Zhakhovsky, Yu. Kolobov, S. Ashitkov et al., Phys.Fluids 35, 096104 (2023).
10.
S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man,Sov. Phys. JETP 39, 375 (1974).
11.
W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor,Phys. Rev. Lett. 68, 2834 (1992).
12.
C.-K. Sun, F. Vall’ee, L. H. Acioli et al., Phys. Rev.B 50, 15337 (1994).
13.
J. Hohlfeld, S.-S. Wellershoff, J. Guedde et al., Chem.Phys. 251, 237 (2000).
14.
N. Del Fatti, C. Voisin, M. Achermann et al., Phys.Rev. B 61, 16956 (2000).
15.
A. N. Smith and P. M. Norris, Appl. Phys. Lett. 78,1240 (2001).
16.
P. E. Hopkins, J. M. Klopf, and P. M. Norris, Appl.Opt. 46, 2076 (2007).
17.
Yu. V. Petrov, K. P. Migdal, N. A. Inogamov, and V.V. Zhakhovsky, Appl. Phys. B 119, 401 (2015).
18.
Yu. V. Petrov, K. P. Migdal, N. A. Inogamov, and S.I. Anisimov, JETP Lett. 104, 431 (2016).
19.
B.Y. Mueller and B. Rethfeld, Phys. Rev. B 87, 035139 (2013).
20.
B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov,J. Phys. D 50, 193001 (2017).
21.
A. A. Abrikosov, Fundamentals of the Theory of Metals, Moscow, Nauka (1987).
22.
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge Univ. Press (1970).
23.
M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, Sov. Phys. JETP 4(2), 173 (1957).
24.
Yu. V. Petrov, Laser Part. Beams 23, 283 (2005).
25.
V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, J. Opt. Soc. Am. B 23, 1954 (2006).
26.
C. A. Paddock and G. L. Eesley, J. Appl. Phys. 60, 285 (1986).
27.
N. A. Inogamov, V. A. Khokhlov, S. A. Romashevskiy et al., JETP Lett. 117, 104 (2023).
28.
V. V. Temnov, C. Klieber, K. A. Nelson et al., Nature Commun. 4, 1468 (2013).
29.
F. Akhmetov, I. Milov, S. Semin et al., Vacuum 212,112045 (2023).
30.
K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., Phys. Rev. Lett. 81, 224 (1998).
31.
N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov et al., JETP 107, 1 (2008).
32.
J. C. Crowhurst, M. R. Armstrong, K. B. Knight et al., Phys. Rev. Lett. 107, 144302 (2011).
33.
S. I. Ashitkov, P. S. Komarov, M. B. Agranat et al., JETP Lett. 98, 384 (2013).
34.
N. Hasegawa, M. Nishikino, M. Ishino et al., Springer Proc. Phys. 202, 273 (2018).
35.
B. Albertazzi, N. Ozaki, V. Zhakhovsky et al., Sci. Adv. 3, e160270 (2017).
36.
M. Z. Mo, Z. Chen, R. K. Li et al., Science 360 (6396), 1451 (2018).
37.
R. Fang, A. Vorobyev, and Ch. Guo, Light: Sci. Appl. 6, e16256 (2017).
38.
N. A. Inogamov, A. M. Oparin, Yu. V. Petrov et al., JETP Lett. 69, 310 (1999).
39.
V. V. Zhakhovskii, K. Nishihara, S. I. Anisimov, and N. A. Inogamov, JETP Lett. 71, 167 (2000).
40.
L. V. Zhigilei and B. J. Garrison, J. Appl. Phys. 88, 1281 (2000).
41.
N. A. Inogamov and Yu. V. Petrov, JETP 110, 446 (2010).
42.
N. A. Smirnov, Phys. Rev. B 106, 024109 (2022).
43.
Zh. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B 77, 075133 (2008).
44.
N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, JETP 120, 15 (2015).
45.
S. I. Anisimov, V. V. Zhakhovsky, N. A. Inogamov et al., JETP 129, 757 (2019)].
46.
M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, Phys. Chem. Chem. Phys. 15, 3108 (2013).
47.
A. Block, R. Yu, Ieng-Wai Un et al., ACS Photonics 10, 1150 (2023).
48.
Yu. V. Petrov, N. A. Inogamov, and K.P. Migdal, JETP Lett. 97, 20 (2013).
49.
S. I. Ashitkov, P. S. Komarov, V. V. Zhakhovsky et al., J. Phys.: Conf. Ser. 774, 012097 (2016).
50.
A. Block, M. Liebel, R. Yu et al., Sci. Adv. 5, eaav8965 (2019).
51.
M. Segovia and X. Xu, Nano Lett. 21, 7228 (2021).
52.
G. Gao, L. Jiang, B. Xue et al., Small Methods 7, 2201260 (2023).
53.
N. A. Inogamov, V. V. Zhakhovsky, S. I. Ashitkov et al., Contrib. Plasma Phys. 51, 367 (2011).
54.
N. A. Inogamov and V. V. Zhakhovsky, J. Phys.: Conf. Ser. 681, 012001 (2016).
55.
N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov et al., J. Phys.: Conf. Ser. 774, 012102 (2016).
56.
V. V. Shepelev and N. A. Inogamov, J. Phys: Conf. Ser. 946, 012010 (2018).
57.
J. M. Liu, Opt. Lett. 7, 196 (1982).
58.
S. I. Kudryashov, A. A. Samokhvalov, Ya. D. Golubev et al., Appl. Surf. Sci. 537, 147940 (2021).
59.
S. I. Ashitkov, N. A. Inogamov, P. S. Komarov et al., High Temp. 60, 192 (2022).
60.
S. Babar and J. H. Weaver, Appl. Opt. 54, 477 (2015).
61.
H. Reddy, U. Guler, A. V. Kildishev et al., Opt. Mater. Express 6, 2776 (2016).
62.
M. Magnozzi, M. Ferrera, L. Mattera et al., Nanoscale 11, 1140 (2019).