Home / Publications / QUANTUM DYNAMICS OF JAHN-TELLER COMPLEXES Cr2+F8‾IN A CdF2 : Cr CRYSTAL

QUANTUM DYNAMICS OF JAHN-TELLER COMPLEXES Cr2+F8‾IN A CdF2 : Cr CRYSTAL

Share
Cite this
GOST
 | 
Cite this
GOST Copy
Sarychev M. N. et al. QUANTUM DYNAMICS OF JAHN-TELLER COMPLEXES Cr2+F8‾IN A CdF2 : Cr CRYSTAL // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 2. pp. 216-222.
GOST all authors (up to 50) Copy
Sarychev M. N., Ofitserova N. Y., Zhevstovskikh I. V., Egranov A. V., Surikov V. T., Averkiev N. S., Gudkov V. V. QUANTUM DYNAMICS OF JAHN-TELLER COMPLEXES Cr2+F8‾IN A CdF2 : Cr CRYSTAL // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 2. pp. 216-222.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240208e6
UR - https://jetp.colab.ws/publications/10.31857/S00444510240208e6
TI - QUANTUM DYNAMICS OF JAHN-TELLER COMPLEXES Cr2+F8‾IN A CdF2 : Cr CRYSTAL
T2 - Journal of Experimental and Theoretical Physics
AU - Sarychev, M. N.
AU - Ofitserova, N. Yu.
AU - Zhevstovskikh, I. V.
AU - Egranov, A. V.
AU - Surikov, V. T.
AU - Averkiev, N. S.
AU - Gudkov, V. V.
PY - 2023
DA - 2023/10/02
PB - Nauka Publishers
SP - 216-222
IS - 2
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Sarychev,
author = {M. N. Sarychev and N. Yu. Ofitserova and I. V. Zhevstovskikh and A. V. Egranov and V. T. Surikov and N. S. Averkiev and V. V. Gudkov},
title = {QUANTUM DYNAMICS OF JAHN-TELLER COMPLEXES Cr2+F8‾IN A CdF2 : Cr CRYSTAL},
journal = {Journal of Experimental and Theoretical Physics},
year = {2023},
volume = {165},
publisher = {Nauka Publishers},
month = {Oct},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240208e6},
number = {2},
pages = {216--222},
doi = {10.31857/S00444510240208e6}
}
MLA
Cite this
MLA Copy
Sarychev, M. N., et al. “QUANTUM DYNAMICS OF JAHN-TELLER COMPLEXES Cr2+F8‾IN A CdF2 : Cr CRYSTAL.” Journal of Experimental and Theoretical Physics, vol. 165, no. 2, Oct. 2023, pp. 216-222. https://jetp.colab.ws/publications/10.31857/S00444510240208e6.
Views / Downloads
1 / 24

Keywords

doped crystals
elastic moduli
Jahn-Teller effect
potential barrier
quantum tunneling
relaxation
semiconductors
ultrasonic waves
vibronic interaction

Abstract

The results of ultrasonic studies of a crystal with a fluorite structure CdF2 doped with low concentration chromium atoms (nCr=6.3·1019 cm-3 with a predominance of Cr3+ ions were presented. The measurements were performed in the range of 3.6-150 K at frequencies 18-268 MHz using transverse and longitudinal normal modes propagating in the crystallographic direction [100]. The anomalies characteristic for systems of Jahn-Teller cubic complexes with orthorhombic minima of the adiabatic potential have been discovered in the temperature dependence of the attenuation and velocity of ultrasonic waves. The interpretation of the results was carried out in the framework of the quadratic T ⊗ (e+t2) problem of the Jahn-Teller effect for Cr2+F8‾ complexes, whose concentration was of the order of 10-2 nCr. The analysis of the experimental data made it possible to determine the configurational relaxation mechanisms of the Jahn-Teller subsystem and the values of the parameters that determine them.

The bibliography includes 28 references

[1-28]

References

1.
R. C. Powell, Symmetry, Group Theory, and the Physical Properties of Crystals, Springer, New York, Dordrecht, Heidelberg, London, (2010).
2.
G. Boulon, Opt. Mater. 34, 499 (2012).
3.
N.M. Avram and M.G. Brik (Editors), Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis, Springer, Heidelberg, New York, Dordrecht, London (2013).
4.
R. Alcala, P. J. Alonso, V. Orera, H V. den Hartog, Phys, Rev. B 32, 4158 (1985).
5.
M. M. Zaripov, V. F. Tarasov, V. A. Ulanov, G. S. Shakurov, Physics of the Solid State 44, 2050 (2002).
6.
A.V. Egranov, E. A. Radzhabov, V. A. Kozlovsky, Bulletin of the Russian Academy of Sciences: Physics, 86 (7), 802 (2022).
7.
J. T. Vallin, G. A. Slack, S. Roberts, A E. Hughes, Phys. Rev. B 2, 4313 (1970).
8.
I. B. Bersuker, V. Z. Polinger, Vibroniv Interactions in Molecules and Crystals, Springer- Verlag, Berlin, Heidelberg, New York, London, (1989).
9.
M. D. Sturge, The Jahn Teller Effect in Solids, in: F. Seitz, D. Turnbull, H. Ehrenreich (Eds.), Solid State Physics, Academic Press, 20, 91 (1967).
10.
N. E. Sluchanko, E. S. Zhukova, L. N. Alyabyeva, B. P. Gorshunov, A. V. Muratov, Yu. A. Aleshchenko, A. N. Azarevich, M. A. Anisimov, N. Y Shitsevalova, S. E. Polovets and V. B. Filipov, JETP 136, 148 (2023).
11.
A. V. Sobolev, V. I. Nitsenko, A. A. Belik, I. S. Glazkova, M. S. Kondratyeva and I. A. Presniakov, JETP 137, 404 (2023).
12.
I. V. Zhevstovskikh, I. B. Bersuker, V. V. Gudkov, N. S. Averkiev, M. N. Sarychev, S. Zherlitsyn, S. Yasin, G. S. Shakurov, V. A. Ulanov, and V. T. Surikov, J. Appl. Phys. 119, 225108 (2016).
13.
M. N. Sarychev, W. A. L. Hosseny, A. S. Bondarevskaya, I. V. Zhevstovskikh, A. V. Egranov, O. S. Grunskiy, V. T. Surikov, N. S. Averkiev, V. V. Gudkov, J. Alloy. Comp. 848, 156167 (2020).
14.
M. N. Sarychev, A. S. Bondarevskaya, I. V. Zhevstovskikh, V. A. Ulanov, G. S. Shakurov, A. V. Egranov, V. T. Surikov, N. S. Averkiev, V. V. Gudkov, JETP 132, 790 (2021).
15.
M. N. Sarychev, W. A. L. Hosseny, I. V. Zhevstovskikh, V. A. Ulanov, A. V. Egranov, V. T. Surikov, N. S. Averkiev, V. V. Gudkov, JETP 135, 473 (2022).
16.
I. B. Bersuker, The Jahn-Teller Effect, Cambridge University Press, Cambridge, (2006).
17.
M. M. Zaripov, V. F. Tarasov, V. A. Ulanov, G. S. Shakurov, M. L. Popov, Sov. Phys. – Fizica Tverdogo Tela 37, 806 (2006).
18.
V. A. Ulanov, M. M. Zaripov, E. P. Zheglov, R. M. Eremina, Physics of the Solid State 45, 73 (2003).
19.
M. N. Sarychev, Investigation of the dynamics of Jahn -Teller complexes in crystals by methods of physical acoustics, diss. cand. of phys.-math. sciences, UrFU, Ekaterinburg (2023).
20.
V. V. Gudkov, Ultrasonic consequences of the Jahn Teller effect, in: H. Koppel, D. R. Yarkony, H. Barentzen (Eds.), The Jahn Teller Effect: Fundamentals and Implications for Physics and Chemistry, Springer, Berlin, Heidelberg, 743 (2009).
21.
M. D. Sturge, J. T. Krause, E. M Gyorgy, R. C. LeCraw, F. R. Merritt, Phys. Rev. 155, 218 (1967).
22.
R. Pirc, B. Zeks, P. Gosar, J. Phys. Chem. Solids 27, 1219 (1966).
23.
S. A. Payne, L. L. Chase, W. F. Kupke, J. Chem. Phys. 86, 3455 (1987).
24.
S. A. Payne, L. L. Chase, W. F. Kupke, J. Lumin. 40, 305 (1988).
25.
M. N. Sarychev, W. A. L. Hosseny, I. V. Zhevstovskikh, V. A. Ulanov, G. S. Shakurov, A. V. Egranov, V. T. Surikov, N. S. Averkiev, V. V. Gudkov, J. Phys.: Condens. Matter 34, 225401 (2022).
26.
M. N. Sarychev, W. A. L. Hosseny, A. S. Bondarevskaya, G. S. Shakurov, V. A. Ulanov, V. T. Surikov, I. V. Zhevstovskikh, N. S. Averkiev, V. V. Gudkov, AIP Conference Proceedings 2313, 030071 (2020).
27.
N. Yu. Ofitserova, M. N. Sarychev, I. V. Zhevstovskikh, V. A. Ulanov, V. T. Surikov, N. S. Averkiev, V. V. Gudkov, J. Phys.: Conf. Ser. (accepted for publication).
28.
W. Gehlhoff, W. Ulrici, Phys. Stat. Sol. B 102, 11 (1980).