Home / Publications / COLLAPSE OF MINOR MAGNETIC HYSTERESIS LOOP IN GRANULAR HIGH-TC SUPERCONDUCTOR YBa2Cu3O7−δ

COLLAPSE OF MINOR MAGNETIC HYSTERESIS LOOP IN GRANULAR HIGH-TC SUPERCONDUCTOR YBa2Cu3O7−δ

D.A. Balaev 1 *
D.A. Balaev
S.V. Semenov 1
S.V. Semenov
D. M. Gokhfeld 1
D. M. Gokhfeld
M. I. Petrov 1
M. I. Petrov
Published 2023-10-16
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Balaev D. et al. COLLAPSE OF MINOR MAGNETIC HYSTERESIS LOOP IN GRANULAR HIGH-TC SUPERCONDUCTOR YBa2Cu3O7−δ // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 2. pp. 247-254.
GOST all authors (up to 50) Copy
Balaev D., Semenov S., Gokhfeld D. M., Petrov M. I. COLLAPSE OF MINOR MAGNETIC HYSTERESIS LOOP IN GRANULAR HIGH-TC SUPERCONDUCTOR YBa2Cu3O7−δ // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 2. pp. 247-254.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240211e7
UR - https://jetp.colab.ws/publications/10.31857/S00444510240211e7
TI - COLLAPSE OF MINOR MAGNETIC HYSTERESIS LOOP IN GRANULAR HIGH-TC SUPERCONDUCTOR YBa2Cu3O7−δ
T2 - Journal of Experimental and Theoretical Physics
AU - Balaev, D.A.
AU - Semenov, S.V.
AU - Gokhfeld, D. M.
AU - Petrov, M. I.
PY - 2023
DA - 2023/10/16
PB - Nauka Publishers
SP - 247-254
IS - 2
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Balaev,
author = {D.A. Balaev and S.V. Semenov and D. M. Gokhfeld and M. I. Petrov},
title = {COLLAPSE OF MINOR MAGNETIC HYSTERESIS LOOP IN GRANULAR HIGH-TC SUPERCONDUCTOR YBa2Cu3O7−δ},
journal = {Journal of Experimental and Theoretical Physics},
year = {2023},
volume = {165},
publisher = {Nauka Publishers},
month = {Oct},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240211e7},
number = {2},
pages = {247--254},
doi = {10.31857/S00444510240211e7}
}
MLA
Cite this
MLA Copy
Balaev, D.A., et al. “COLLAPSE OF MINOR MAGNETIC HYSTERESIS LOOP IN GRANULAR HIGH-TC SUPERCONDUCTOR YBa2Cu3O7−δ.” Journal of Experimental and Theoretical Physics, vol. 165, no. 2, Oct. 2023, pp. 247-254. https://jetp.colab.ws/publications/10.31857/S00444510240211e7.
Views / Downloads
1 / 17

Keywords

Abrikosov vortex
effective field in the intergrain medium
Granular HTS
Josephson vortex
magnetization hysteresis
trapped magnetic flux
YBCO

Abstract

The evolution of the magnetic hysteresis loops of the granular high-temperature superconductor YBa2Cu3O7−δ with varying the maximum external applied field Hmax has been experimentally studied. In the range of weak fields (up to ∼10 Oe at a temperature of 78 K), the small hysteresis loop is observed, associated with diamagnetism and the penetration of Josephson vortices into the subsystem of intergranular boundaries, which is a Josephson medium. With further growth of Hmax, the larger magnetization hysteresis loop appears, associated with the penetration of Abrikosov vortices into superconducting granules. When analyzing the experimental data, a non-trivial fact was discovered: the magnetic response from the subsystem of intergranular boundaries becomes less noticeable with increasing Hmax, and at a certain value of Hmax this response disappears. This occurs even though the small hysteresis loop at small values of Hmax is comparable to the magnetic response of superconducting granules.

The described evolution of magnetic hysteresis is explained using the concept of an effective field in an intergranular medium. The total magnetic field in the subsystem of intergranular boundaries is determined not only by the external field, but also by closing fields from the magnetic moments of superconducting granules. In other words, the interaction between the superconducting subsystems of granules and intergranular boundaries leads to the small hysteresis loop in sufficiently small fields, and to its complete disappearance with increasing magnetization modulus of superconducting granules.

The bibliography includes 58 references.

[1-58]

References

1.
Ch. Yao, Y. Ma, Science 24, 102541 (2021).
2.
D.M. Gokhfeld, M. R. Koblischka, A. Koblischka-Veneva, Phys. Met. Metallogr. 121, 936 (2020).
3.
G. Wang, M. J. Raine, D. P. Hampshire, Supercond. Sci. Technol. 31, 024001 (2018).
4.
J. Huang, H. Wang, Supercond. Sci. Technol. 30, 114004 (2017).
5.
J. Zhang, H. Wu, G. Zhao, L. Han, Jun Zhang, Nanomaterials 12, 4000 (2022).
6.
A.P. Menushenkov, A. A. Ivanov, O. V. Chernysheva, I A. Rudnev, M. A. Osipov, A. R. Kaul, V. N. Chepikov, O. Mathon, V. Monteseguro, F. d’Acapito, Supercond. Sci. Technol. 35, 065006 (2022).
7.
S. Eley, A. Glatz, and R. Willa, J. Appl. Phys. 130, 050901 (2021).
8.
Y. Yeshurun, A. P. Malozemoff, A. Shaulov, Rev. Mod. Phys. 68, 911 (1996).
9.
A.M. Balagurov, L. G. Mamsurova, I. A. Bobrikov, To Thanh Loan, V. Yu. Pomjakushin, K. S. Pigalskiy, N. G. Trusevich, A. A. Vishnev, JETP 114, 1001 (2012).
10.
N. G. Trusevich. Yu. Gavrilkin, L. I. Trakhtenberg, JETP 137, 356 (2023).
11.
T. V. Sukhareva, V. A. Finkel, JETP Lett. 108, 243 (2018).
12.
V. A. Kashurnikov, A. N. Maksimova, I. A. Rudnev, A. N. Moroz, Phys. Metals Metallogr. 122, 434 (2021).
13.
M.R. Koblischka, S. P. Kumar Naik, A. Koblischka-Veneva, D. M. Gokhfeld, M. Murakami, Supercond. Sci. Technol., 33, 044008 (2020).
14.
D.M. Gokhfeld, N. E. Savitskaya, S. I. Popkov, N. D. Kuzmichev, M. A. Vasyutin, D. A. Balaev, JETP 134, 707 (2022).
15.
D. A. Balaev, D. M. Gokhfeld, S. I. Popkov, K. A. Shaikhutdinov, L. A. Klinkova, L. N. Zherikhina, A. M. Tsvokhrebov, JETP 118, 104 (2014).
16.
D. A. Balaev, A. A. Dubrovskiy, S. I. Popkov, K. A. Shaikhutdinov, O. N. Mart’yanov, M. I. Petrov, JETP 110, 584 (2010).
17.
17. T. V. Sukhareva, V. A. Finkel’, Tech. Phys. 55, 66 (2010).
18.
T. V. Sukhareva, V. A. Finkel’, Phys. Solid State 52, 452 (2010).
19.
L. G. Mamsurova, N. G. Trusevich, K. S. Pigalskiy, A. A. Vishnev, S. K. Gadzhimagomedov, Z. K. Murlieva, D. K. Palchaev, A. S. Bugaev, J. Phys. Chem. B. 12, 908 (2018).
20.
A.A. Lepeshev, G. S. Patrin, G. Y. Yurkin, A. D. Vasiliev, I. V. Nemtsev, D. M. Gokhfeld, A. D. Balaev, V. G. Demin, E. P. Bachurina, I. V. Karpov, A. V. Ushakov, L. Y. Fedorov, L. A. Irtyugo, M. I. Petrov, J. Supercond. Nov. Magn. 31, 3841 (2018).
21.
I.A. Rudnev, A. I. Podlivaev, D. A. Abin, S. V. Pokrovskii, A. S. Starikovskii, R. G. Batulin, P. A. Fedin, K. E. Prianishnikov, T. V. Kulevoy, Phys. Solid State 65, 379 (2023).
22.
A.N. Maksimova, I. A. Rudnev, I. A. Kashurnikov, A. N. Moroz, Phys. Solid State 65, 517 (2023).
23.
D.M. Gokhfeld, S. V. Semenov, I. V. Nemtsev, I. S. Yakimov, D. A. Balaev, J. Supercond. Nov. Magn. 35, 2679 (2022).
24.
E. Taylan Koparan, A. Surdu, A. Awawdeh, A. Sidorenko, E. Yanmaz, J. Supercond. Nov. Magn. 25, 1761 (2012).
25.
C.P. Bean, Rev. Mod. Phys. 36, 31 (1964).
26.
C. Navau, N. Del-Valle, and A. Sanchez, IEEE Trans. Appl. Supercond. 23, 8201023 (2013).
27.
L. Ji, M. S. Rzchowski, N. Anand, and M. Tinkham, Phys. Rev. B 47, 470 (1993).
28.
M. Mahel’, J. Pivarc, Physica C 308, 147 (1998).
29.
V. V. Val’kov, B. P. Khrustalev, JETP 80, 680 (1995).
30.
E.V. Blinov, Yu.P. Stepanov, K. B. Traito, L. S. Vlasenko, R. Laiho and E. Lahderanta, JETP 79, 433 (1994).
31.
D.M. Gokhfeld, Phys. Solid State 56, 2380 (2014).
32.
G.E. Gough, M. S. Colclough, D. A. O’Connor, E. Wellhoffer, N. McN. Alford, T. W. Button, Cryogenics 31, 119 (1991).
33.
J. Jung, M.-K. Mohamed, S. C. Cheng, J. P. Franck, Phys. Rev. B. 42, 6181(1990).
34.
F. Pėrez, X. Obradors, J. Fontcuberta, X. Bozec, A. Fert, Supercond. Sci. Technol. 9, 161-175 (1996).
35.
B. Andrzejewski, E. Guilmeau, C. Simon, Supercond. Sci. Technol. 14, 904 (2001).
36.
L. Burlachkov, A. E. Koshelev, V. M. Vinokur, Phys. Rev. B 54, 6750 (1996).
37.
F.F. Ternovskii, L. N. Shekhata, JETP 35, 1202 (1972).
38.
A. A. Elistratov, I. L. Maksimov, Phys. Solid State 42, 201 (2000).
39.
E.B. Sonin, JETP Lett. 47, 415 (1988).
40.
J. Paasi, A. Tuohimaa, J.-T. Eriksson, Physica C 259, 10 (1996).
41.
G. Ravikumar and P. Chaddah, Phys. Rev. B. 39, 4704 (1989).
42.
P. Chaddah, K. V. Bhagwat, and G. Ravikumar, Physica C 159 570 (1989).
43.
M. Zehetmayer, Phys. Rev. B. 80, 104512 (2009).
44.
R. Lal, Physica C. 470, 281 (2010).
45.
D.M. Gokhfeld, J. Supercond. Nov. Magn. 36, 1089 (2023).
46.
C. Böhmer, G. Brandstätter, H. W. Weber, Supercond. Sci. Technol. 10, A1 (1997).
47.
R. Liang, P. Dosanjh, D. A. Bonn, W. N. Hardy, A. J. Berlinsky, Phys. Rev. B 50, 4212 (1994).
48.
D. Daghero, P. Mazzetti, A. Stepanescu, P. Tura, Phys. Rev. B 66 (13), 11478 (2002).
49.
D. A. Balaev, D. M. Gokhfeld, A. A. Dubrovskiĭ, S. I. Popkov, K. A. Shaikhutdinov, M. I. Petrov, JETP 105, 1174 (2007).
50.
D. A. Balaev, A. A. Dubrovskiĭ, K. A. Shaikhutdinov, S. I. Popkov, D. M. Gokhfeld, Yu. S. Gokhfeld, M. I. Petrov, JETP 108, 241 (2009).
51.
D.A. Balaev, S. I. Popkov, E. I. Sabitova, S. V. Semenov, K. A. Shaykhutdinov, A. V. Shabanov, M. I. Petrov, J. Appl. Phys. 110, 093918 (2011).
52.
A. Altinkok, K. Kilic, M. Olutas, A. Kilic, J. Supercond. Nov. Magn. 26, 3085 (2013).
53.
D.A. Balaev, S. V. Semenov, M. A. Pochekutov, J. Appl. Phys. 122, 123902 (2017).
54.
S.V. Semenov, D. A. Balaev, Physica C 550, 19 (2018).
55.
S.V. Semenov, D. A. Balaev, J. Supercond. Nov. Magn. 32, 2409 (2019).
56.
S.V. Semenov, A. D. Balaev, D. A. Balaev, J. Appl. Phys. 125, 033903 (2019).
57.
S.V. Semenov, D. A. Balaev, Phys. Solid State 62, 1136 (2020).
58.
S.V. Semenov, D. A. Balaev, M. I. Petrov, Phys. Solid State 63, 1069 (2021).