Home / Publications / STRONG NEGATIVE MAGNETORESISTANCE AND HOPPING TRANSPORT IN GRAPHENIZED NEMATIC AEROGELS

STRONG NEGATIVE MAGNETORESISTANCE AND HOPPING TRANSPORT IN GRAPHENIZED NEMATIC AEROGELS

V. I. Tsebro 1, 2
V. I. Tsebro
E. G. Nikolaev 2
E. G. Nikolaev
M. S. Kutuzov 3
M. S. Kutuzov
A. V. Sadakov 1
A. V. Sadakov
O. A. Sobolevski 1
O. A. Sobolevski
Published 2023-11-10
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Tsebro V. I. et al. STRONG NEGATIVE MAGNETORESISTANCE AND HOPPING TRANSPORT IN GRAPHENIZED NEMATIC AEROGELS // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 2. pp. 255-264.
GOST all authors (up to 50) Copy
Tsebro V. I., Nikolaev E. G., Kutuzov M. S., Sadakov A. V., Sobolevski O. A. STRONG NEGATIVE MAGNETORESISTANCE AND HOPPING TRANSPORT IN GRAPHENIZED NEMATIC AEROGELS // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 2. pp. 255-264.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240212e2
UR - https://jetp.colab.ws/publications/10.31857/S00444510240212e2
TI - STRONG NEGATIVE MAGNETORESISTANCE AND HOPPING TRANSPORT IN GRAPHENIZED NEMATIC AEROGELS
T2 - Journal of Experimental and Theoretical Physics
AU - Tsebro, V. I.
AU - Nikolaev, E. G.
AU - Kutuzov, M. S.
AU - Sadakov, A. V.
AU - Sobolevski, O. A.
PY - 2023
DA - 2023/11/10
PB - Nauka Publishers
SP - 255-264
IS - 2
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Tsebro,
author = {V. I. Tsebro and E. G. Nikolaev and M. S. Kutuzov and A. V. Sadakov and O. A. Sobolevski},
title = {STRONG NEGATIVE MAGNETORESISTANCE AND HOPPING TRANSPORT IN GRAPHENIZED NEMATIC AEROGELS},
journal = {Journal of Experimental and Theoretical Physics},
year = {2023},
volume = {165},
publisher = {Nauka Publishers},
month = {Nov},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240212e2},
number = {2},
pages = {255--264},
doi = {10.31857/S00444510240212e2}
}
MLA
Cite this
MLA Copy
Tsebro, V. I., et al. “STRONG NEGATIVE MAGNETORESISTANCE AND HOPPING TRANSPORT IN GRAPHENIZED NEMATIC AEROGELS.” Journal of Experimental and Theoretical Physics, vol. 165, no. 2, Nov. 2023, pp. 255-264. https://jetp.colab.ws/publications/10.31857/S00444510240212e2.
Views / Downloads
3 / 20

Keywords

graphenized aerogels
hopping transport
negative magnetoresistance
weak localization,

Abstract

The transport properties of nematic aerogels, which consist of oriented mullite nanofibers coated with a graphene shell, were studied. It is shown that the magnetoresistance of this system is well approximated by two contributions – negative one, described by the formula for systems with weak localization, and positive contribution, linear in the field and unsaturated in large magnetic fields. The behavior of phase coherence length on temperature obtained from the analysis of the negative contribution indicates the main role of the electron-electron interaction in the destruction of phase coherence and, presumably, the transition at low temperatures from a two-dimensional weak localization regime to a one-dimensional one. The positive linear contribution to magnetoresistance is apparently due to the inhomogeneous distribution of the local carrier density in the conductive medium. It has also been established that the temperature dependence of the resistance for graphenized aerogels with a low carbon content, when the graphene coating is apparently incomplete, can be represented as the sum of two contributions, one of which is characteristic of weak localization, and the second is described by hopping mechanism corresponding to the Efros-Shklovskii law in the case of a granular conductive medium. For samples with a high carbon content, there is no second contribution.

The bibliography includes 33 references.

[1-33]

References

1.
I. Hussainova, R. Ivanov, S. N. Stamatin et al., Carbon 88, 157 (2015).
2.
R. Ivanov, V. Mikli, J. Kübarsepp and I. Hussainova, Key Engin. Mater. 674, 77 (2016).
3.
V. S. Solodovnichenko, M. M. Simunin, D. V. Lebedev et al., Thermochim. Acta 675, 164 (2019).
4.
V. I. Tsebro, E. G. Nikolaev, L. B. Luganskii et al., JETP 134, 222 (2022).
5.
S. Hikami, A. I. Larkin and Y. Nagaoka, Prog. of Theor. Phys. 63, 707 (1980).
6.
P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
7.
N. Ramakrishnan, Y. T. Lai, S. Lara et al., Phys. Rev. B 96, 224203 (2017).
8.
J. Ping, I. Yudhistira, N. Ramakrishnan et al., Phys. Rev. Lett. 113, 047206 (2014).
9.
A. Narayanan, M. D. Watson, S. F. Blake et al., Phys. Rev. Lett. 114, 117201 (2015).
10.
W. L. Zhu, Y. Cao, P. J. Guo et al., Phys. Rev. B 105, 125116 (2022).
11.
A. L. Friedman, J. L. Tedesco, P. M. Campbell et al., Nano Lett. 10, 3962 (2010).
12.
F. Kisslinger, C. Ott, C. Heide et al., Nat. Phys. 11, 650 (2015).
13.
S. Gu, K. Fan, Y. Yang et al., Phys. Rev. B 104, 115203 (2021).
14.
B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, New York, 1984; Nauka, Moscow, 1979).
15.
B. I. Shklovskii and A. L. Efros, in Electronic Properties of Doped Semiconductors, Vol. 45 of Springer Series in Solid-State Sciences, Springer-Verlag, Berlin, Heidelberg GmbH (1984).
16.
J. Zhang and B. I. Shklovskii, Phys. Rev. B 70, 115317 (2004).
17.
I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79 469 (2007).
18.
T. Hu and B. I. Shklovskii, Phys. Rev. B 74, 054205 (2006).
19.
T. Hu and B. I. Shklovskii, Phys. Rev. B 74, 174201 (2006).
20.
I. L. Aleiner, B. L. Altshuler, and M. E. Gershenson, Waves in Random Media 9, 201 (1999).
21.
L. Piraux, F. Abreu Araujo, T. N. Bui et al., Phys. Rev. B 92, 085428 (2015).
22.
B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, J. Phys. C: Sol. St. Phys. 15, 7367 (1982).
23.
S. Lara-Avila, A. Tzalenchuk, S. Kubatkin et al., Phys. Rev. Lett. 107, 166602 (2011).
24.
A. M. R. Baker, J. A. Alexander-Webber, T. Altebaeumer et al., Phys. Rev. B 86, 235441 (2012).
25.
F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008).
26.
D.-K. Ki, D. Jeong, J.-H. Choi et al., Phys. Rev. B 78, 125409 (2008).
27.
R. Tarkiainen, M. Ahlskog, A. Zyuzin et al., Phys. Rev. B 69, 033402 (2004).
28.
F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, Phys. Rev. Lett. 103, 226801 (2009).
29.
R. Xu, A. Husmann, T. F. Rosenbaum et al., Nature 390, 57 (1997).
30.
A. Husmann, J. B. Betts, G. S. Boebinger et al., Nature 417, 421 (2002).
31.
M. M. Parish and P. B. Littlewood, Nature 426, 162 (2003).
32.
M. M. Parish and P. B. Littlewood, Phys. Rev. B 72, 094417 (2005).
33.
V. Guttal and D. Stroud, Phys. Rev. B 71, 201304 (2005).