Home / Publications / SCREENED AND VAN DER WAALS INTERACTIONS IN DUSTY PLASMA AND ELECTROLYTES

SCREENED AND VAN DER WAALS INTERACTIONS IN DUSTY PLASMA AND ELECTROLYTES

Share
Cite this
GOST
 | 
Cite this
GOST Copy
Filippov A. SCREENED AND VAN DER WAALS INTERACTIONS IN DUSTY PLASMA AND ELECTROLYTES // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 2. pp. 265-282.
GOST all authors (up to 50) Copy
Filippov A. SCREENED AND VAN DER WAALS INTERACTIONS IN DUSTY PLASMA AND ELECTROLYTES // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 2. pp. 265-282.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240213e1
UR - https://jetp.colab.ws/publications/10.31857/S00444510240213e1
TI - SCREENED AND VAN DER WAALS INTERACTIONS IN DUSTY PLASMA AND ELECTROLYTES
T2 - Journal of Experimental and Theoretical Physics
AU - Filippov, A.V.
PY - 2023
DA - 2023/09/20
PB - Nauka Publishers
SP - 265-282
IS - 2
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Filippov,
author = {A.V. Filippov},
title = {SCREENED AND VAN DER WAALS INTERACTIONS IN DUSTY PLASMA AND ELECTROLYTES},
journal = {Journal of Experimental and Theoretical Physics},
year = {2023},
volume = {165},
publisher = {Nauka Publishers},
month = {Sep},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240213e1},
number = {2},
pages = {265--282},
doi = {10.31857/S00444510240213e1}
}
MLA
Cite this
MLA Copy
Filippov, A.V.. “SCREENED AND VAN DER WAALS INTERACTIONS IN DUSTY PLASMA AND ELECTROLYTES.” Journal of Experimental and Theoretical Physics, vol. 165, no. 2, Sep. 2023, pp. 265-282. https://jetp.colab.ws/publications/10.31857/S00444510240213e1.

Keywords

dust particle
dusty plasma
geometric factor
linearized Debye-Hückel equation
retardation
screening
van der Waals interaction

Abstract

Screened electrostatic and van der Waals interactions of nano- and micron-sized particles in dusty plasma were considered. The electrostatic interaction is considered on the basis of the linearized Poisson-Boltzmann equation for particles both with fixed charges uniformly distributed over their surfaces and with fixed surface electric potentials. The found solution of the problem makes it possible to study the interaction of both particles of comparable radius and particles of very different sizes. The interaction force takes into account the osmotic component, which in the case of constant charges leads to the restoration of the equality of the forces acting on the first and second particles. For the van der Waals interaction, the screening of static fluctuations and the retardation of electromagnetic fields for the dispersive part of the interaction were taken into account. Based on the analysis of various expressions for the geometric factor, taking into account the retardation of the electromagnetic field, a numerically stable method for calculating this factor was proposed. The total energy of interaction of two charged dust particles is calculated for plasma parameters characteristic of dusty plasma: the electron and ion number densities from 108 to 1012 cm-3, the particle radius from 10 nm to 1 μm and the particle charges from 10 to 103 elementary charges per micron of particle radius.

The bibliography includes 94 references.

[1-94]

References

1.
J.N. Israelachvili, Intermolecular and surface forces; 3rd ed. (Elsevier, Amsterdam, 2011) pp.191-499.
2.
B. Honig, A. Nicholls, Science 268, 1144-1149 (1995).
3.
I. Ledezma-Yanez, W. D.Z. Wallace, P. Sebastián-Pascual, V. Climent, J. M. Feliu, M. T. Koper, Nat. Energy 2 (4), 17031 (2017).
4.
B. Smit, J. A. Reimer, C. M. Oldenburg, I. C. Bourg, Introduction to carbon capture and sequestration, v.1. (World Scientific, Singapore, 2014).
5.
M. Manciu, E. Ruckenstein, Langmuir 17, 7061-7070 (2001).
6.
H. Wennerstrom, E. Vallina Estrada, J. Danielsson, M. Oliveberg, Proc. Natl. Acad. Sci. USA 117, 10113-10121 (2020).
7.
S. Su, I. Siretanu, D. van den Ende, B. Mei, G. Mul, F. Mugele, Adv. Mater. 33, 2106229 (2021).
8.
D.F. Parsons, M. Boström, P. L. Nostro, B. W. Ninham, Phys. Chem. Chem. Phys. 13 (27), 12352-12367 (2011).
9.
K. Voïtchovsky, J. J. Kuna, S. A. Contera, E. Tosatti, F. Stellacci, Nat. Nanotechnol. 5 (6), 401-405 (2010).
10.
V.N. Tsytovich, Phys. Usp. 40, 53-94 (1997).
11.
A.P. Nefedov, O. F. Petrov, V. E. Fortov, Phys. Usp. 40, 1163-1173 (1997).
12.
V.I. Molotkov, O. F. Petrov, M. Yu. Pustyl’nik, V.M. Torchinskii, V. E. Fortov, A. G. Khrapak, High Temp. 42, 827-841 (2004).
13.
S.V. Vladimirov, K. Ostrikov, A. A. Samarian, Physics and Applications of Complex Plasmas (London, Imperial College Press, 2005).
14.
V.E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, G. E. Morfill, Phys. Rep. 421, 1 (2005).
15.
G.E. Morfill, A. V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).
16.
M. Bonitz, C. Henning, D. Block, Rep. Prog. Phys. 73, 066501 (2010).
17.
Complex and dusty plasma: from the laboratory to space, eds. V. Fortov, G. Morfill. (Science, Fizmatlit, Moscow, 2012) (in Russian).
18.
A. Ivlev, H. Lowen, G. Morfill, C. P. Royall, Complex plasmas and colloidal dispersions: particle-resolved studies of classical liquids and solids. Series in Soft Condensed Matter, vol. 5 (World Scientific, Singapore, 2012).
19.
I. Mann, N. Meyer-Vernet, A. Czechowski, Phys. Rep. 536, 1 (2014).
20.
P. K. Shukla and A. A. Mamun, Introduction to dusty plasma physics (CRC Press, Bristol and Philadelphia, 2015).
21.
A.V. Ivlev, S. A. Khrapak, V. I. Molotkov, A. G. Khrapak, Introduction to the Physics of Dust and Complex Plasma (Intellect Publishing House, Moscow, 2017).
22.
A.M. Lipaev, V. I. Molotkov, D. I. Zhukhovitskii, V. N. Naumkin, A. D. Usachev, A. V. Zobnin, O. F. Petrov, V. E. Fortov, High Temp. 58 (4), 449-475 (2020).
23.
I.M. Kennedy, S. J. Harris, J. Colloid. Interface. Sci. 130, 489-497 (1989).
24.
P. Patra, A. Roy, Phys. Rev. Fluids 7, 064308, 20 p. (2022).
25.
T.B. Jones, T. B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 2005).
26.
A. Castellanos, Adv. Phys. 54 (4), 263-376 (2005).
27.
J. Feng, G. Biskos, A. Schmidt-Ott, Scientific reports 5, 1-9 (2015).
28.
F. Greiner, A. Melzer, B. Tadsen, S. Groth, C. Killer, F. Kirchschlager, F. Wieben, I. Pilch, H. Kruger, D. Block, A. Piel, S. Wolf, Eur. Phys. J. D 72, 81 (2018).
29.
A.R. Wassel, M. E. El-Naggar, K. Shoueir, J. Environ, Chem. Eng. 8 104175, (2020).
30.
X. Meng, J. Zhu, and J. Zhang, J. Phys. D 42, 065201 (2009).
31.
V. A. Turek, M. P. Cecchini, J. Paget, A. R. Kucernak, A. A. Kornyshev, J. B. Edel, ACS Nano 6, 7789 (2012).
32.
P.-P. Fang, S. Chen, H. Deng, M. D. Scanlon, F. Gumy, H. J. Lee, D. Momotenko, V. Amstutz, F. Cortés-Salazar, C. M. Pereira, Z. Yang, H. H. Girault, ACS Nano 7, 9241 (2013).
33.
J. B. Edel, A. A. Kornyshev, M. Urbakh, ACS Nano 7, 9526 (2013).
34.
B. Gady, D. Schleef, R. Reifenberger, D. Rimai, and L. P. DeMejo, Phys. Rev. B 53, 8065 (1996).
35.
35] B. Gady, R. Reifenberger, D. S. Rimai, L. P. De-Mejo, Langmuir 13, 2533-2537 (1997).
36.
Y. Liu, C. Song, G. Lv, N. Chen, H. Zhou, X. Jing, Appl. Surf. Sci. 433, 450-457 (2018).
37.
M.C. Stevenson, S. P. Beaudoin, and D.S. Corti, J. Phys. Chem. C 124 3014 (2020).
38.
M.C. Stevenson, S. P. Beaudoin, and D.S. Corti, J. Phys. Chem. C 125 20003 (2021).
39.
H. Zhou, M. Götzinger, W. Peukert, Powder Technol. 135-136, 82-91 (2003).
40.
Y. Gao, E. Tian, and J. Mo, ACS ES&T Eng. 1, 10, 1449-1459 (2021).
41.
N.M. Kovalchuk, D. Johnson, V. Sobolev, N. Hilal, V. Starov, Adv. Colloid. Interface. Sci. 272, 102020 (2019).
42.
B.V. Derjaguin, N. V. Churaev, V. M. Muller, Surface Forces (Consultants Bureau: New York, 1987).
43.
E.J.W. Verwey, J. Th.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).
44.
A.B. Glendinning, W. B. Russel, J. Colloid Interface Sci. 93, 95-104 (1983).
45.
S.L. Carnie, D. Y.C. Chan, J. Colloid, Interf. Sci. 161, 260-264 (1993).
46.
A.V. Filippov, I. N. Derbenev, J. Exp. Theor. Phys. 123 (6), 1099-1109 (2016).
47.
I.N. Derbenev, A. V. Filippov, A. J. Stace, E. Besley, J. Chem. Phys. 145, 084103 (2016), 9 pp.
48.
A.V. Filippov, I. N. Derbenev, A. A. Pautov, M. M. Rodin, J. Exp. Theor. Phys. 125 (3), 518-529 (2017).
49.
I.N. Derbenev, A. V. Filippov, A. J. Stace, E. Besley, Soft Matter 14, 5480-5487 (2018).
50.
S.V. Siryk, A. Bendandi, A. Diaspro, W. Rocchia, J. Chem. Phys. 155, 114114 (2021).
51.
S.V. Siryk, W. Rocchia, J. Phys. Chem. B 126, 10400 (2022).
52.
Y.-K. Yu, Phys. Rev. E 102, 052404 (2020).
53.
O.I. Obolensky, T. P. Doerr, Y.-K. Yu, Eur. Phys. J. E 44, 129 (2021).
54.
W.R. Bowen, F. Jenner, Adv. Colloid Interface Sci. 56, 201-243 (1995).
55.
J.I. Kilpatrick, S.-H. Loh, S. P. Jarvis, J. Am. Chem. Soc. 135, 2628-2634 (2013).
56.
S.R. Van Lin, K. K. Grotz, I. Siretanu, N. Schwierz, F. Mugele, Langmuir 35, 5737-5745 (2019).
57.
A. Klaassen, F. Liu, F. Mugele, I. Siretan, Langmuir 38, 914-926 (2022).
58.
A.V. Filippov, V. M. Starov, JETP Lett. 117 (8), 598-605 (2023).
59.
A.V. Filippov, V. Starov, J. Phys. Chem. B 127, 6562-6572 (2023).
60.
A.V. Filippov, J. Exp. Theor. Phys. 109 (3), 516-529 (2009).
61.
A.V. Filippov, Contr. Plasma Phys. 49, 433-447 (2009).
62.
V.R. Munirov, A. V. Filippov, J. Exp. Theor. Phys. 117, 809-819 (2013).
63.
A.V. Filippov, JETP Letters 115 (3), 174-180 (2022).
64.
A.V. Filippov, J. Exp. Theor. Phys. 134 (5), 590-599 (2022).
65.
P. Debye, E. Hükel, Phys. Zeitschr. 24, 185-206 (1923).
66.
H.S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon, Oxford, 1959; Nauka, Moscow, 1964).
67.
G.N. Watson, A treatise on the theory of Bessel functions (Cambridge University Press, 1922, London).
68.
D. Langbein, Theory of Van der Waals Attraction, Springer Tracts in Modern Physics; v.72, G. Hohler, Ed. (Springer-Verlag, Berlin Heidelberg New York, 1974).
69.
V.V. Batygin, I. N. Toptygin, Problems in Electrodynamics, 2nd Edition (Academic Press, London, England, 1978).
70.
W.R. Smythe, Static and dynamic electricity, 2nd ed. (Hemisphere Pub, New York, Toronto, London 1950).
71.
V.R. Munirov, A. V. Filippov, J. Exp. Theor. Phys. 115, 527-534 (2012).
72.
E.S. Reiner, C. J. Radke, J. Chem, Soc. Faraday Trans. 86, 3901-3912 (1990).
73.
M.K. Gilson, M. E. Davis, B. A. Luty, J. A. McCammon, J. Phys. Chem. 97, 3591-3600 (1993).
74.
B. Lu, X. Cheng, T. Hou, J. A. McCammon, J. Chem. Phys. 123, 084904 (2005).
75.
W.H. Press, W. T. Vetterling, S. A. Teukolsky, B. P. Flannery, Numerical Recipes Example Book (FORTRAN) (Cambridge University Press, Cambridge, 1992).
76.
H. C. Hamaker, Physica 4, 1058-1072 (1937).
77.
H.B.G. Casimir, D. Polder, Phys. Rev. 73, 360-372 (1948).
78.
E.M. Lifshitz, J. Exp. Theor. Phys. USSR 2, 73-83 (1956).
79.
I.E. Dzyaloshinskii, E. M. Lifshitz, L. P. Pitaevskii, J. Exp. Theor. Phys. USSR 10, 161-170 (1960).
80.
B.V. Derjaguin, I. I. Abrikosova, E. M. Lifshitz, Phys. Usp. 58, 906-924 (2015).
81.
Y.S. Barash, V. L. Ginzburg, Sov. Phys. Usp. 27, 467-491 (1984).
82.
N.V. Churaev, Russ. Chem. Rev. 73, 25-36 (2004).
83.
D.J. Mitchell, B. W. Ninham, J. Chem. Phys. 56, 1117-1126 (1972).
84.
R.G. Horn, J. N. Israelachvili, J. Chem. Phys. 75, 1400-1411 (1981).
85.
J.Th.G. Overbeek, in “Colloid Science”, H.R. Kruyt, Ed., Vol. 1, p. 266 (Elsevier, Amsterdam, 1952).
86.
B. Vincent, J. Colloid. Interf. Sci. 42, 270-285 (1973).
87.
P. Görner, J. Pich, J. Aerosol Sci. 20, 735-747 (1989).
88.
J. Chen, A. Anandarajah, J. Colloid. Interf. Sci. 180, 519-523 (1996).
89.
G.Sh. Boltachev, N. B. Volkov, K. A. Nagayev, J. Colloid. Interf. Sci. 355, 417-422 (2011).
90.
S.R. Gomes de Sousa, A. Leonel, A. J.F. Bombard, Smart Mater. Struct. 29, 055039 (2020).
91.
A.A. Radzig, B. M. Smirnov, Handbook of Atomic and Molecular Physics (Atomizdat, Moscow, 1980) (in Russian).
92.
A.V. Filippov, N. A. Dyatko, A. S. Kostenko, J. Exp. Theor. Phys. 119 (5), 985-995 (2014).
93.
A.V. Filippov, V. N. Babichev, A. F. Pal’, A.N. Starostin, V. E. Cherkovets, V. K. Rerikh, M. D. Taran, Plasma Phys. Rep. 41 (11), 895-904 (2015).
94.
W. Gautschi, J. Slavik, Math. Comput. 32, 865-875 (1978)