Home / Publications / THE EFFECT OF THE PHASE OF AN IONIZING ULTRASHORT LASER PULSE ON THE FORMATION OF QUANTUM VORTICES IN THE DENSITY DISTRIBUTION OF A PHOTOELECTRON

THE EFFECT OF THE PHASE OF AN IONIZING ULTRASHORT LASER PULSE ON THE FORMATION OF QUANTUM VORTICES IN THE DENSITY DISTRIBUTION OF A PHOTOELECTRON

Share
Cite this
GOST
 | 
Cite this
GOST Copy
Larionov N. THE EFFECT OF THE PHASE OF AN IONIZING ULTRASHORT LASER PULSE ON THE FORMATION OF QUANTUM VORTICES IN THE DENSITY DISTRIBUTION OF A PHOTOELECTRON // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 3. pp. 307-316.
GOST all authors (up to 50) Copy
Larionov N. THE EFFECT OF THE PHASE OF AN IONIZING ULTRASHORT LASER PULSE ON THE FORMATION OF QUANTUM VORTICES IN THE DENSITY DISTRIBUTION OF A PHOTOELECTRON // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 3. pp. 307-316.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240302e3
UR - https://jetp.colab.ws/publications/10.31857/S00444510240302e3
TI - THE EFFECT OF THE PHASE OF AN IONIZING ULTRASHORT LASER PULSE ON THE FORMATION OF QUANTUM VORTICES IN THE DENSITY DISTRIBUTION OF A PHOTOELECTRON
T2 - Journal of Experimental and Theoretical Physics
AU - Larionov, N.V.
PY - 2023
DA - 2023/11/03
PB - Nauka Publishers
SP - 307-316
IS - 3
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Larionov,
author = {N.V. Larionov},
title = {THE EFFECT OF THE PHASE OF AN IONIZING ULTRASHORT LASER PULSE ON THE FORMATION OF QUANTUM VORTICES IN THE DENSITY DISTRIBUTION OF A PHOTOELECTRON},
journal = {Journal of Experimental and Theoretical Physics},
year = {2023},
volume = {165},
publisher = {Nauka Publishers},
month = {Nov},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240302e3},
number = {3},
pages = {307--316},
doi = {10.31857/S00444510240302e3}
}
MLA
Cite this
MLA Copy
Larionov, N.V.. “THE EFFECT OF THE PHASE OF AN IONIZING ULTRASHORT LASER PULSE ON THE FORMATION OF QUANTUM VORTICES IN THE DENSITY DISTRIBUTION OF A PHOTOELECTRON.” Journal of Experimental and Theoretical Physics, vol. 165, no. 3, Nov. 2023, pp. 307-316. https://jetp.colab.ws/publications/10.31857/S00444510240302e3.
Views / Downloads
5 / 30

Keywords

momentum representation
photoelectron
probability flux
quantum vortex

Abstract

Quantum vortices formed by a photoelectron obtained as a result of over-barrier ionization of a two-dimensional hydrogen atom by an extremely short laser pulse are theoretically investigated. The sensitivity of quantum vortices to the initial phase of the ionizing field is analyzed. The interference effects responsible for the appearance of vortices are being clarified. For the model under consideration, the use of various gauges in describing the interaction of an electron with a field is discussed.

The bibliography includes 42 references.

[1-42]

References

2.
Manipulation of matter with shaped-pulse light field and its applications
Qi H., Lian Z., Fei D., Chen Z., Hu Z.
Advances in Physics: X, 2021
3.
Quantum Control by Ultrafast Polarization Shaping
Brixner T., Krampert G., Pfeifer T., Selle R., Gerber G., Wollenhaupt M., Graefe O., Horn C., Liese D., Baumert T.
Physical Review Letters, 2004
5.
Interactions of Intense Extremely Short Pulses with Quantum Objects
Rosanov N.N.
Optics and Spectroscopy (English translation of Optika i Spektroskopiya), 2018
6.
R.M. Arkhipov, P. A. Belov, M. V. Arkhipov et al., Kvantovaya Elektronika 52, 610 (2022)
11.
Creating and Manipulating Vortices in Atomic Wave Functions with Short Electric Field Pulses
Ovchinnikov S.Y., Sternberg J.B., Macek J.H., Lee T., Schultz D.R.
Physical Review Letters, 2010
13.
J.M. Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, A. F. Starace, Phys. Rev. A 94, 013408 (2016), DOI: 10.1103/PhysRevA.94.013408.
14.
Electron Vortices in Femtosecond Multiphoton Ionization
Pengel D., Kerbstadt S., Johannmeyer D., Englert L., Bayer T., Wollenhaupt M.
Physical Review Letters, 2017
15.
J.M. Ngoko Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov, A. V. Meremianin, A. F. Starace, Phys. Rev. Lett. 115, 113004 (2015), DOI: 10.1103/ PhysRevLett.115.113004
19.
N.V. Larionov, V. M. Molchanovskiy, Optics and Spectroscopy 131, 1449 (2023), DOI: 10.61011/OS.2023.11.56998.5238-23
20.
J.H. Chen, X. R. Xiao, S. F. Zhao, L. Y. Peng, Phys. Rev. A 101, 033409 (2020), DOI: 10.1103/PhysRevA.101.033409
24.
L. Geng, F. Cajiao Velez, J. Z. Kami?nski, L.Y. Peng, K. Krajewska, Phys. Rev. A 104, 033111 (2021), DOI: 10.1103/PhysRevA.104.033111
33.
P.A.M. Dirac, Proc. Roy. Soc. A. 133, 60 (1931)
35.
R.F. Nalewajski, J Math Chem 53, 1966 (2015), DOI: 10.1007/s10910-015-0526-2
36.
B. Zaslow, M. E. Zandler, Amer. J. Phys. 35, 1118 (1967), DOI: 10.1119/1.1973790
40.
V. A. Ditkin, A. P. Prudnikov, Integral Transforms and Operational Calculus, Published by Pergamon Press Ltd., Oxford (1965)
41.
I.N. Toptygin, Foundations of Classical and Quantum Electrodynamics, Wiley-VCH, Berlin (2013)
42.
Claude Cohen-Tannoudji, Jacques Dupont-Roc, Gilbert Grynberg, Atom-Photon Interactions: Basic Processes and Applications, John Wiley $\&$ Sons, Inc. (New York) (1992), pp. 656