Home / Publications / POLARIZATION CHARACTERISTICS OF ELECTRODYNAMIC STARK EFFECT SPECTRA

POLARIZATION CHARACTERISTICS OF ELECTRODYNAMIC STARK EFFECT SPECTRA

A.V. Demura 1 *
A.V. Demura
D.S. Leontyev 1
D.S. Leontyev
V.S. Lisitsa 1, 2, 3
V.S. Lisitsa
1 National Research Centre Kurchatov institute
2 National Research University MPTI
Published 2023-11-15
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Demura A., Leontyev D., Lisitsa V. POLARIZATION CHARACTERISTICS OF ELECTRODYNAMIC STARK EFFECT SPECTRA // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 3. pp. 334-353.
GOST all authors (up to 50) Copy
Demura A., Leontyev D., Lisitsa V. POLARIZATION CHARACTERISTICS OF ELECTRODYNAMIC STARK EFFECT SPECTRA // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 3. pp. 334-353.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240304e2
UR - https://jetp.colab.ws/publications/10.31857/S00444510240304e2
TI - POLARIZATION CHARACTERISTICS OF ELECTRODYNAMIC STARK EFFECT SPECTRA
T2 - Journal of Experimental and Theoretical Physics
AU - Demura, A.V.
AU - Leontyev, D.S.
AU - Lisitsa, V.S.
PY - 2023
DA - 2023/11/15
PB - Nauka Publishers
SP - 334-353
IS - 3
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Demura,
author = {A.V. Demura and D.S. Leontyev and V.S. Lisitsa},
title = {POLARIZATION CHARACTERISTICS OF ELECTRODYNAMIC STARK EFFECT SPECTRA},
journal = {Journal of Experimental and Theoretical Physics},
year = {2023},
volume = {165},
publisher = {Nauka Publishers},
month = {Nov},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240304e2},
number = {3},
pages = {334--353},
doi = {10.31857/S00444510240304e2}
}
MLA
Cite this
MLA Copy
Demura, A.V., et al. “POLARIZATION CHARACTERISTICS OF ELECTRODYNAMIC STARK EFFECT SPECTRA.” Journal of Experimental and Theoretical Physics, vol. 165, no. 3, Nov. 2023, pp. 334-353. https://jetp.colab.ws/publications/10.31857/S00444510240304e2.
Views / Downloads
7 / 17

Keywords

Balmer alpha line
Motional Stark Effect
parabolic wave functions
polarization characteristics of H-atom spectra
tokamak plasma

Abstract

The detailed study of physical processes responsible for the hydrogen atom spectra under its motion transverse to the strong magnetic field – due to electrodynamic Stark effect, known also as MSE (Motional Stark Effect) – is performed. The formation mechanisms of excited hydrogen levels population due to collisions with protons of plasma are investigated. The experimental and theoretical data on the total and partial excitation cross sections along with parabolic quantum numbers in the laboratory frame of moving atom are confronted. The universal approach for the calculations of cross sections in the basis of the parabolic wave functions with an account of their adiabatic suppression in the low energy range of collisions and selective in terms of the parabolic quantum numbers is proposed. The method developed is applied for the construction of the collisional-radiative kinetic model for the partial populations of the excited Stark sublevels calculations taking into account the ionization due to collisions with protons. The sources of the thermodynamically nonequilibrium origin of the Stark sublevel populations in the electrodynamic Stark effect are revealed in the wide diapason of the plasma density variation. The intensities of π- and σ Stark components of Hα line versus beam energy, magnetic field and plasma density are calculated. The polarization characteristics of MSE spectra of Hα line are calculated in the magnetically confined thermonuclear plasma. The obtained results are in the reasonable agreement with the literature data. The developed method is of interest as from the general physical point of view, as for the MSE-spectroscopy of tokamaks and in the other experimental conditions.

The bibliography includes 37 references.

[1-37]

References

1.
Yu. I. Galushkin, Soviet Astronomy AJ 14, 301 (1970).
2.
F.M. Levinton, R. J. Fonck, G. M. Gammel et al., Phys.Rev.Lett. 63, 2060 (1989).
3.
V.A. Krupin, S. N. Ivanov, A. A. Medvedev et al, Preprint IAE–5940/7 (1995).
4.
H.Y.-H. Yuh, PhD Thesis, MIT, Cambridge (2005).
5.
R.Reimer, PhD Thesis, Universitat Greifswald, Greifswald (2016).
6.
A. Thorman, PhD Thesis, The Australian National University, Canberra (2018).
7.
F.M. Levinton and H. Yuh, Rev. Sci. Instrum. 79, 10F522 (2008).
8.
M. F. Gu, C. T. Holcomb, R. J. Jayakuma et al., J. Phys.B: Atom. Mol.Opt.Phys. 41, 095701 (2008).
9.
W. Mandl, R. C. Wolf, M. G. von Hellermann et al., Plasma Phys.Control. Fusion 35, 1373 (1993).
10.
N.A. Pablant, K. H. Burrell, R. J. Groebner et al., Rev. Sci. Instrum. 79, 10F517 (2008).
11.
O. Marchuk, Yu. Ralchenko, R. K. Janev et al., J. Phys.B: Atom. Mol.Opt.Phys. 43, 011002 (2010).
12.
R. Reimer, A. Dinklage, J. Geiger et al., ASDEX Upgrade and Wendelstein 7-X Teams, Contrib.Plasma Phys. 50, 731 (2010).
13.
E. Delabie, M. Brix, C. Giroud et al., Plasma Phys. Control. Fusion 52 125008 (2010).
14.
A. Dinklage, R. Reimer, R. Wolf, Wendelstein 7-X Team, M. Reich, and ASDEX Upgrade Team, Fusion Sci.Technol. 59, 406 (2011).
15.
R. Reimer, A. Dinklage, R. Fischer et al., and ASDEX Upgrade, Rev. Sci. Instrum. 84, 113503 (2013).
16.
R.C. Wolf, A. Bock, O. P. Ford et al., J. Instrum. 10, P1008 (2015).
17.
Yu. Ralchenko, O. Marchuk, W. Biel et al., Rev. Sci Instrum. 83, 10D504 (2012).
18.
O. Marchuk, Yu. Ralchenko, and D.R. Schultz, Plasma Phys.Control. Fusion 54, 095010 (2012).
19.
M. von Hellermann, M. de Bock, O. Marchuk et al., Atoms 7, 30 (2019).
20.
O. Marchuk, D. R. Schultz, and Yu. Ralchenko, Atoms 8, 8 (2020).
21.
I.I. Sobel’man, Introduction to the Theory of Atomic Spectra, Pergamon Press, Oxford (1972).
22.
J.T. Park, J. E. Aldag, J. M. George et al., Phys. Rev.A 14, 608 (1976).
23.
D. Rapp and D. Dinwiddie, Convergence of the Hydrogenic Expansion in H+–H Scattering, J. Chem. Phys. 57, 4919 (1972)
24.
D.R. Bates and G. Griffing, Proc. Phys. Soc.A London 66, 64 (1953).
25.
L.D. Landau, E. M. Lifshitz, Quantum Mechanics. Non-relativistic Theory, vol. III, 3d ed., Pergamon Press, 1991
26.
I.S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products, 8 th ed., Academic Press, Oxford (2015).
27.
H. Bethe, E. Salpeter, Quantum Mechanics of One – and Two- Electron Atoms, Springer, Berlin (1957)
28.
I.Y. Skobelev and A.V. Vinogradov, J. Phys.B: Atom. Mol. Phys. 11, 2899 (1978).
29.
A.V. Vinogradov, I. Y. Skobelev A. M. Urnov et al, Proc. (Trudy) P.N. Lebedev Physics Institute 119, 120 (1980) (in Russian).
30.
A.V. Vinogradov, Proc. P.N. Lebedev Physical Institute 51, Consultants Bureau, New York (1971) p. 45.
31.
R. J. Glauber, High Energy Collision Theory, in Lectures in Theoretical Physics, Vol. 1, Interscience, New York (1959), p. 315.
32.
V. Franco and B.K. Thomas, Phys.Rev.A 4, 945 (1971).
33.
R.K. Janev, D. Reiter, and U. Samm, Collision Processes in Low-Temperature Hydrogen Plasmas, Forschungszentrum J¨ulich (2003).
34.
R.K. Janev and J. J. Smith, Cross Sections for Collisions Processes of Hydrogen Atoms with Electrons, Protons and Multiply Charged Ions, Suppl.Nucl. Fusion 4, IAEA, Vienna (1993).
35.
R.E. Olson, J. Phys.B 13, 483 (1980).
36.
R. J. Damburg and V.V. Kolosov, J. Phys.B: Atom. Mol. Phys. 12, 2637 (1979).
37.
P.A. Braun and E.A. Solov’ev, J. Phys.B: Atom. Mol. Phys. 17, L211 (1984)