Home / Publications / CHANGES IN TRANSITION METAL DICHALCOGENIDE FILMS PROPERTIES ON VARIOUS STAGES OF CHEMICAL VAPOR DEPOSITION

CHANGES IN TRANSITION METAL DICHALCOGENIDE FILMS PROPERTIES ON VARIOUS STAGES OF CHEMICAL VAPOR DEPOSITION

A.B. Loginov 1 *
R.R. Ismagilov 1
R.R. Ismagilov
P.V. Fedotov 2, 3
P.V. Fedotov
I.V. Sapkov 1
I.V. Sapkov
M.M. Kuvatov 1
M.M. Kuvatov
B.A. Loginov 4
B.A. Loginov
E.D. Obraztsova 2, 3
E.D. Obraztsova
A. N. Obraztsov 1
A. N. Obraztsov
1 Physics Department, Lomonosov Moscow State University
3 National Research University “Moscow Institute of Physics and Technology”
4 National Research University of Electronic Technology
Published 2023-10-02
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Loginov A. et al. CHANGES IN TRANSITION METAL DICHALCOGENIDE FILMS PROPERTIES ON VARIOUS STAGES OF CHEMICAL VAPOR DEPOSITION // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 3. pp. 354-366.
GOST all authors (up to 50) Copy
Loginov A., Ismagilov R., Fedotov P., Sapkov I., Kuvatov M., Loginov B., Obraztsova E., Obraztsov A. N. CHANGES IN TRANSITION METAL DICHALCOGENIDE FILMS PROPERTIES ON VARIOUS STAGES OF CHEMICAL VAPOR DEPOSITION // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 3. pp. 354-366.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240305e2
UR - https://jetp.colab.ws/publications/10.31857/S00444510240305e2
TI - CHANGES IN TRANSITION METAL DICHALCOGENIDE FILMS PROPERTIES ON VARIOUS STAGES OF CHEMICAL VAPOR DEPOSITION
T2 - Journal of Experimental and Theoretical Physics
AU - Loginov, A.B.
AU - Ismagilov, R.R.
AU - Fedotov, P.V.
AU - Sapkov, I.V.
AU - Kuvatov, M.M.
AU - Loginov, B.A.
AU - Obraztsova, E.D.
AU - Obraztsov, A. N.
PY - 2023
DA - 2023/10/02
PB - Nauka Publishers
SP - 354-366
IS - 3
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Loginov,
author = {A.B. Loginov and R.R. Ismagilov and P.V. Fedotov and I.V. Sapkov and M.M. Kuvatov and B.A. Loginov and E.D. Obraztsova and A. N. Obraztsov},
title = {CHANGES IN TRANSITION METAL DICHALCOGENIDE FILMS PROPERTIES ON VARIOUS STAGES OF CHEMICAL VAPOR DEPOSITION},
journal = {Journal of Experimental and Theoretical Physics},
year = {2023},
volume = {165},
publisher = {Nauka Publishers},
month = {Oct},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240305e2},
number = {3},
pages = {354--366},
doi = {10.31857/S00444510240305e2}
}
MLA
Cite this
MLA Copy
Loginov, A.B., et al. “CHANGES IN TRANSITION METAL DICHALCOGENIDE FILMS PROPERTIES ON VARIOUS STAGES OF CHEMICAL VAPOR DEPOSITION.” Journal of Experimental and Theoretical Physics, vol. 165, no. 3, Oct. 2023, pp. 354-366. https://jetp.colab.ws/publications/10.31857/S00444510240305e2.
Views / Downloads
3 / 14

Keywords

chemical vapor deposition
monolayers
MoS2
nanowalls
transition metal dichalcogenides
WS2

Abstract

Transition metal dichalcogenides (TMDs) are attracting continuously growing attention due to a number of their unique properties. Possibilities of their application are significantly defined by improvement of obtaining methods. In this work we study formation of TMD (MoS2, WS2) mesoporous films during chemical vapor deposition with the use of gaseous H2S and thermally evaporated transition metals (Mo or W). Morphology, Raman spectra, photoluminescent properties and electrical conductivity of TMD films are investigated at different precursors concentrations and deposition duration times. The analysis revealed main stages of TMD films growth: isolated 2D monocrystalline islands formation (i), partial overlapping of these crystallites with their gradual growth in the plane of the substrate (ii), formation and growth of plate-like crystallites oriented perpendicular to the substrate surface (iv). Qualitative changes of morphology, electrical conductivity and PL properties of TMD films are explained with taking into account interaction of TMD electronic sub-system with the substrate and neighboring crystallites.

The bibliography includes 34 references.

[1-34]

References

1.
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
2.
Chernozatonskii L A and Artyukh A A 2018 Phys.-Uspekhi 61 2–28
3.
Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M and Robinson J A 2015 ACS Nano 9 11509–39
4.
Chowdhury T, Kim J, Sadler E C, Li C, Lee S W, Jo K, Xu W, Gracias D H, Drichko N V, Jariwala D, Brintlinger T H, Mueller T, Park H-G and Kempa T J 2020 Nat. Nanotechnol. 15 29–34 [5] Feng Y P, Shen L, Yang M, Wang A, Zeng M, Wu Q, Chintalapati S and Chang C 2017 WIREs Comput. Mol. Sci. 7
5.
Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
6.
Wang T-H and Jeng H-T 2017 Npj Comput. Mater. 3 5
7.
Yi Y, Chen Z, Yu X, Zhou Z and Li J 2019 Adv. Quantum Technol. 2 1800111
8.
Lin Y, Ling X, Yu L, Huang S, Hsu A L, Lee Y-H, Kong J, Dresselhaus M S and Palacios T 2014 Nano Lett. 14 5569–76
9.
Mak K F and Shan J 2016 Nat. Photonics 10 216–26
10.
Bernardi M, Palummo M and Grossman J C 2013 Nano Lett 13
11.
Liu H F, Wong S L and Chi D Z 2015 Chem. Vap. Depos. 21 241–59
12.
Li S, Chen X, Liu F, Chen Y, Liu B, Deng W, An B, Chu F, Zhang G, Li S, Li X and Zhang Y 2019 ACS Appl. Mater. Interfaces 11 11636–44
13.
Ma X, Zhang J, Sun Y, Wu C, Geng G, Zhang J, Wu E, Xu L, Wu S, Hu X and Liu J 2022 ACS Appl. Mater. Interfaces 14 47288–99
14.
Peng X, Chen J, Wang S, Wang L, Duan S, Feng P and Chu J 2022 Appl. Surf. Sci. 599 153904 [16] Mobtakeri S, Habashyani S and Gür E 2022 ACS Appl. Mater. Interfaces 14 25741– 52
15.
Sun J, Li X, Guo W, Zhao M, Fan X, Dong Y, Xu C, Deng J and Fu Y 2017 Crystals 7 198
16.
Zhang X-Q, Lin C-H, Tseng Y-W, Huang K-H and Lee Y-H 2015 Nano Lett. 15 410– 5
17.
Liu Y, Weiss N O, Duan X, Cheng H-C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042 [20] Sahoo P K, Memaran S, Xin Y, Balicas L and Gutiérrez H R 2018 Nature 553 63–7
18.
Loginov A B, Fedotov P V, Bokova-Sirosh S N, Sapkov I V, Chmelenin D N, Ismagilov R R, Obraztsova E D, Loginov B A and Obraztsov A N 2022 Phys. Status Solidi B 2200481
19.
Arzhakov M S, Aleksandrova N A, Zhirnov A E, Lukovkin G M and Arzhakov S A 2008 Dokl. Phys. Chem. 418 26–9
20.
Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K and Warner J H 2014 Chem. Mater. 26 6371–9
21.
Godin K, Cupo C and Yang E-H 2017 Sci. Rep. 7 17798
22.
Kleshch V I, Ismagilov R R, Mukhin V V, Orekhov A S, Filatyev A S and Obraztsov A N 2022 Nanotechnology 33 415201
23.
Ismagilov R, Malykhin S, Puzyr A, Loginov A, Kleshch V and Obraztsov A 2021 Materials 14 2320
24.
Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695–700
25.
Berkdemir A, Gutiérrez H R, Botello-Méndez A R, Perea-López N, Elías A L, Chia C-I, Wang B, Crespi V H, López-Urías F, Charlier J-C, Terrones H and Terrones M 2013 Sci. Rep. 3 1755
26.
Do Nascimento Barbosa A, Mendoza C A D, Figueroa N J S, Terrones M and Freire Júnior F L 2021 Appl. Surf. Sci. 535 147685
27.
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G and Wang F 2010 Nano Lett. 10 1271–5
28.
Scheuschner N, Ochedowski O, Kaulitz A-M, Gillen R, Schleberger M and Maultzsch J 2014 Phys. Rev. B 89 125406
29.
Zhu B, Chen X and Cui X 2015 Sci. Rep. 5 9218
30.
Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys. 90 021001
31.
Salehi S and Saffarzadeh A 2016 Surf. Sci. 651 215–21
32.
Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207–11
33.
Klots A R, Newaz A K M, Wang B, Prasai D, Krzyzanowska H, Lin J, Caudel D, Ghimire N J, Yan J, Ivanov B L, Velizhanin K A, Burger A, Mandrus D G, Tolk N H, Pantelides S T and Bolotin K I 2014 Sci. Rep. 4 6608
34.
Lee B M and Loh K J 2015 J. Mater. Sci. 50 2973–83