Keywords
high-entropy alloys
interstitial defects
metallic glasses
mixing entropy
molecular dynamics
Abstract
Classical molecular dynamics simulation for a number of single crystals of FeNiCrCoCu system showed that with increasing entropy of mixing the average formation enthalpy of interstitial defects and their shear susceptibility decreases monotonically. For interstitial defects in crystals and defect subsystems of glasses of the same composition, has been established that the average deviator components of dipole tensors decrease with increasing entropy of mixing, and the decrease occurs more strongly in the high-entropy region. All this may indicate the presence of a correlation between mixing entropy and properties of the defect subsystem of crystalline and glassy states.
References
1.
S. C. Glade, R. Busch, D. S. Lee, W. L. Johnson, J. Appl. Phys. 87, 7242–7248 (2000).
2.
X. Ji, Y. Pan, J. Non-Cryst. Solids 353, 2443–2446 (2007).
3.
S. Guo, Q. Hu, C. Ng, C. T. Liu, Intermetallics 41, 96-103 (2013).
4.
H.-R. Jiang, B. Bochtler, S. S. Riegler, X.-S. Wei, N. Neuber, M. Frey, I. Gallino, R. Busch, J. Shen, J. Alloys Compd. 844, 156126 (2020).
5.
A. S. Makarov, G. V. Afonin, R. A. Konchakov, V. A. Khonik, J. C. Qiao, A. N. Vasiliev, N. P. Kobelev, Scripta Mater. 239, 115783 (2024).
6.
J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater. 6, 299 (2004).
7.
E. P. George, D. Raabe, R. O. Ritchie, Nat. Rev. Mater. 4, 515 (2019).
8.
Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, Materials Today 19, 349–362 (2016).
9.
D. Kumar, Progress in Materials Science 136, 101106 (2023).
10.
W. Chen, Nature Communications 14, 2856 (2023).
11.
Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, Z. P. Lu, Progress in Materials Science 61, 1–93 (2014).
12.
R. E. Ryltsev, S. Kh. Estemirova, V. S. Gaviko, D. A. Yagodin, V. A. Bykov, E. V. Sterkhov, L. A. Cherepanova, I. S. Sipatov, I. A. Balyakin, S. A. Uporov, Materialia 21, 101311 (2022).
13.
S. Uporov, S. Kh. Estemirova, V. A. Bykov, D. A. Zamyatin, R. E. Ryltsev, Intermetallics 122, 106802 (2020).
14.
S. A. Uporov, R. E. Ryltsev, S. Kh. Estemirova, E. V. Sterkhov, N. M. Chtchelkatchev, Scripta Materialia 193 108–111 (2021).
15.
Z. Li, S. Zhao, R. O. Ritchie, M. A. Meyers, Progress in Materials Science 102, 296–345 (2019).
16.
S. A. Uporov, R. E. Ryltsev, V. A. Bykov, S. Kh. Estemirova, D. . Zamyatin, Journal of Alloys and Compounds 820, 153228 (2020).
17.
S. A.Uporov, R. E. Ryltsev, V. A. Sidorov, S. Kh Estemirova, E. V. Sterkhov, I. A. Balyakin, N. M. Chtchelkatchev, Intermetallics 140, 107394 (2022).
18.
S. A. Uporov, R. E. Ryltsev, V. A. Bykov, N. S. Uporova, S. Kh Estemirova, N. M. Chtchelkatchev, Journal of Alloys and Compounds 854, 157170 (2021).
19.
H .W. Sheng, W .K. Luo, F. M. Alamgir, E. Ma, Nature 439, 419 (2006).
20.
Y. Q. Cheng, E. Ma, Prog. Mater. Sci. 56, 379 (2011).
21.
W. H. Wang, Prog. Mater. Sci. 57, 487 (2012).
22.
A. Hirata, P. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A. R. Yavari, T. Sakurai, M. Chen, Nature Materials 10, 28-33 (2011).
23.
A. Hirata, L. J. Kang, T. Fujita, B. Klumov, K. Matsue, M. Kotani, A. R. Yavari, M. W. Chen, Science 341, 376-379 (2013).
24.
F. Spaepen, Acta Metall. 25, 407 (1977).
25.
M. L. Falk, J. S. Langer, Phys. Rev. E 57, 7192 (1998).
26.
Y. C. Hu, P. F. Guan, M. Z. Li, C. T. Liu, Y. Yang, H. Y. Bai, W. H. Wang, Phys. Rev. B 93, 214202 (2016).
27.
T. Egami, S. J. Poon, Z. Zhang, V. Keppens, Phys. Rev. B 76, 024203 (2007).
28.
M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99128 (2000).
29.
H. L. Peng, M. Z. Li, W. H. Wang, Phys. Rev. Lett. 106, 135503 (2011).
30.
H. Zhang, C. Zhong, J. F. Douglas, X. Wang, Q. Cao, D. Zhang, J.-Z. Jiang, J. Chem. Phys. 142, 164506 (2015).
31.
J. C. Qiao, J. M. Pelletier, J. Mater. Sci. Technol. 30, 523 (2014).
32.
R. A. Konchakov, N. P. Kobelev, V. A. Khonik, A. S. Makarov, Physics of the Solid State 58(2), 215 (2016).
33.
R. A. Konchakov, A. S. Makarov, A. S. Aronin, N. P. Kobelev, V. A. Khonik, JETP Letters 115(5), 280 (2022).
34.
R. A. Konchakov, A. S. Makarov, N. P. Kobelev, A. M. Glezer, G. Wilde, V. A. Khonik, J. Phys.: Condens. Matter 31, 385703 (2019).
35.
R. A. Konchakov, A. S. Makarov, A. S. Aronin, N. P. Kobelev, V. A. Khonik, JETP Letters 113, 345 (2021).
36.
J. Plimpton, J. Comp. Phys. 117, 1 (1995).
37.
D. Farkas, A. Caro, J. Mater. Res. 33, 3218 (2018).
38.
M. A. Kretova, R. A. Konchakov, N. P. Kobelev, V. A. Khonik, JETP Letters 111(12), 679 (2020).
39.
A. V. Granato, Eur. Phys. J. B 87, 18 (2014).
40.
D. A. Freedman, D. Roundy, T. A. Arias1, Phys. Rev. B 80, 064108 (2009).
41.
W.G. Wolfer, Fundamental properties of defects in metals, Comprehensive Nuclear Materials, ed. by R. J. M. Konings, Elsevier, Amsterdam (2012).
42.
Y. Zhang, C. Z. Wang, F. Zhang, M. I. Mendelev, M. J. Kramer, K. M. Ho, Appl. Phys. Lett. 105, 151910 (2014).
43.
T. Brink, L. Koch, K. Albe, Phys. Rev B 94, 224203 (2016).
44.
N. P. Kobelev, V. A. Khonik, Physics–Uspekhi 193, 717 (2023).
45.
B. A. Klumov, R. E. Ryltsev, N. M. Chtchelkatchev, JETP Letters 104, 546–551 (2016). 46. A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).