Home / Publications / THE ALLOYING EFFECT OF Si ON THERMODYNAMIC, MAGNETIC, AND ELASTIC PROPERTIES OF BCC Fe-Cr ALLOYS

THE ALLOYING EFFECT OF Si ON THERMODYNAMIC, MAGNETIC, AND ELASTIC PROPERTIES OF BCC Fe-Cr ALLOYS

A. V. Ponomareva 1 *
A. V. Ponomareva
1 Materials Modeling and Development Laboratory, National University of Science and Technology ‘MISIS’
Published 2023-11-19
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Ponomareva A. V. THE ALLOYING EFFECT OF Si ON THERMODYNAMIC, MAGNETIC, AND ELASTIC PROPERTIES OF BCC Fe-Cr ALLOYS // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 3. pp. 413-426.
GOST all authors (up to 50) Copy
Ponomareva A. V. THE ALLOYING EFFECT OF Si ON THERMODYNAMIC, MAGNETIC, AND ELASTIC PROPERTIES OF BCC Fe-Cr ALLOYS // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 3. pp. 413-426.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240311e3
UR - https://jetp.colab.ws/publications/10.31857/S00444510240311e3
TI - THE ALLOYING EFFECT OF Si ON THERMODYNAMIC, MAGNETIC, AND ELASTIC PROPERTIES OF BCC Fe-Cr ALLOYS
T2 - Journal of Experimental and Theoretical Physics
AU - Ponomareva, A. V.
PY - 2023
DA - 2023/11/19
PB - Nauka Publishers
SP - 413-426
IS - 3
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Ponomareva,
author = {A. V. Ponomareva},
title = {THE ALLOYING EFFECT OF Si ON THERMODYNAMIC, MAGNETIC, AND ELASTIC PROPERTIES OF BCC Fe-Cr ALLOYS},
journal = {Journal of Experimental and Theoretical Physics},
year = {2023},
volume = {165},
publisher = {Nauka Publishers},
month = {Nov},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240311e3},
number = {3},
pages = {413--426},
doi = {10.31857/S00444510240311e3}
}
MLA
Cite this
MLA Copy
Ponomareva, A. V.. “THE ALLOYING EFFECT OF Si ON THERMODYNAMIC, MAGNETIC, AND ELASTIC PROPERTIES OF BCC Fe-Cr ALLOYS.” Journal of Experimental and Theoretical Physics, vol. 165, no. 3, Nov. 2023, pp. 413-426. https://jetp.colab.ws/publications/10.31857/S00444510240311e3.
Views / Downloads
8 / 43

Keywords

fuel
alloying elements
ductility
elastic constants
Fe-Cr
first-principles calculations
silicon
thermodynamic and magnetic properties

Abstract

In the framework of the density functional theory, the alloying effect of Si on the magnetic and elastic properties, as well as the thermodynamic stability at T = 0 K of ferromagnetic Fe-Cr solid solutions in the BCC structure was studied. Calculations of lattice parameters, mixing enthalpy, elastic constants, bulk moduli, Young’s and shear moduli of disordered binary Fe-Cr and triple Fe-Cr-Si alloys containing 2.3 at. % and 4.7 at. % Si were performed using PAW-SQS and EMTO-CPA methods. Effective chemical interactions of the configuration Hamiltonian, magnetic characteristics and exchange interactions of the Heisenberg Hamiltonian are obtained. A comparative analysis of all obtained properties for ternary Fe-Cr-Si alloys with respect to binary Fe-Cr alloys is carried out. It was found that the addition of 2.3 at. % Si increases the thermodynamic stability of Fe-Cr alloys; this effect is enhanced with an increase in the silicon concentration to 4.7 at.%. The result is due to the Fe-Si and Cr-Si chemical interactions in addition to the magnetic Fe-Cr interactions that determine the stability of the diluted binary alloys. It is shown that with Si addition an increase in the elastic constant C44 is observed, the values of the constants C11, C12 and elastic moduli are close to the corresponding values of binary Fe- Cr alloys. Analysis of the concentration dependence of the ductility parameter G/B and charge density difference maps allowed to establish correlations between the changes in interatomic bonding and the properties of the alloys.

The bibliography includes 63 references.

[1-63]

References

1.
A. A. F. Tavassoli, Journal of Nuclear Materials 258– 263, 85 (1998).
2.
K. L. Murty and I. Charit, Journal of Nuclear Materials 383, 189 (2008).
3.
P. Olsson, I. A. Abrikosov, L. Vitos, and J. Wallenius, Journal of Nuclear Materials 321, 84 (2003).
4.
P. Olsson, I. A. Abrikosov, and J. Wallenius, Phys Rev B 73, 104416 (2006).
5.
T. P. C. Klaver, R. Drautz, and M. W. Finnis, Phys Rev B 74, 094435 (2006).
6.
M. Yu. Lavrentiev, R. Drautz, D. Nguyen-Manh, T. P. C. Klaver, and S. L. Dudarev, Phys. Rev. B 75, 014208 (2007).
7.
P. A. Korzhavyi, A. V. Ruban, J. Odqvist, J.-O. Nilsson, and B. Johansson, Phys Rev B 79, 054202 (2009).
8.
J. S. Wróbel, M. R. Zemła, D. Nguyen-Manh, P. Olsson, L. Messina, C. Domain
9.
T. Wejrzanowski, and S. L. Dudarev, Comput Mater Sci 194, 110435 (2021).
10.
P. Olsson, C. Domain, and J. Wallenius, Phys Rev B 75, 014110 (2007).
11.
L. Messina, T. Schuler, M. Nastar, M.-C. Marinica, and P. Olsson, Acta Mater 191, 166 (2020).
12.
A. V. Ponomareva, A. V. Ruban, B. O. Mukhamedov, and I. A. Abrikosov, Acta Mater 150, 117 (2018).
13.
I. K. Razumov and Yu. N. Gornostyrev, Physics of Metals and Metallography 122, 1031 (2021).
14.
X. Li, X. Li, S. Schönecker, R. Li, J. Zhao, and L. Vitos, Mater Des 146, 260 (2018).
15.
H. Zhang, M. P. J. Punkkinen, B. Johansson, S. Hertzman, and L. Vitos, Phys Rev B 81, 184105 (2010).
16.
J. Xu, J. Zhao, P. Korzhavyi, and B. Johansson, Comput Mater Sci 84, 301 (2014).
17.
V. I. Razumovskiy, A. V. Ruban, and P. A. Korzhavyi, Phys Rev B 84, 024106 (2011).
18.
J. S. Wróbel, D. Nguyen-Manh, M. Yu. Lavrentiev, M. Muzyk, and S. L. Dudarev, Phys Rev B 91, 024108 (2015).
19.
A. V. Ponomareva, M. P. Belov, E. A. Smirnova, K. V. Karavaev, K. Sidnov, B. O. Mukhamedov, and I. A. Abrikosov, Phys Rev Mater 4, 094406 (2020).
20.
W. Li, C. Xu, K. Chen, L. Liu, H. Yang, Q. Cheng, and M. Zeng, Coatings 12, 1588 (2022).
21.
R. Idczak, R. Konieczny, T. Pikula, and Z. Surowiec, Corrosion 75 (2019).
22.
A. M. Huntz, V. Bague, G. Beauplé, C. Haut, C. Sévérac, P. Lecour, X. Longaygue, and F. Ropital, Appl Surf Sci 207, 255 (2003).
23.
S. Paul, M. Muralles, D. Schwen, M. Short, and K. Momeni, The Journal of Physical Chemistry C 125, 22863 (2021).
24.
G. Kresse and D. Joubert, Phys Rev B 59, 1758 (1999).
25.
P. E. Blöchl, Phys Rev B 50, 17953 (1994).
26.
G. Kresse and J. Hafner, Phys Rev B 47, 558 (1993).
27.
G. Kresse and J. Furthmüller, Phys Rev B 54, 11169 (1996).
28.
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
29.
L. Vitos, Computational Quantum Mechanics for Materials Engineers, London, Springer-Verlag, London (2007). doi:10.1007/978-1-84628-951-4
30.
L. Vitos, I. A. Abrikosov, and B. Johansson, Phys Rev Lett 87, 156401 (2001).
31.
A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard, Phys Rev Lett 65, 353 (1990).
32.
H. J. Monkhorst and J. D. Pack, Phys Rev B 13, 5188 (1976).
33.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys Rev Lett 77, 3865 (1996).
34.
J. von Pezold, A. Dick, M. Friák, and J. Neugebauer, Phys Rev B 81, 094203 (2010).
35.
R. Hill, Proceedings of the Physical Society. Section A 65, 349 (1952).
36.
J. Kollar, L. Vitos, and H. L. Skriver, Electronic Structure and Physical Properies of
37.
Solids, Berlin, Heidelberg, Springer Berlin Heidelberg (2000).
38.
A. V. Ruban and H. L. Skriver, Phys Rev B 66, 024201 (2002).
39.
A. V. Ruban, S. Shallcross, S. I. Simak, and H. L. Skriver, Phys Rev B 70, 125115 (2004).
40.
O. E. Peil, A. V. Ruban, and B. Johansson, Phys Rev B 85, 165140 (2012).
41.
R. F. W. Bader, Acc Chem Res 18, 9 (1985).
42.
E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, J Comput Chem 28, 899 (2007).
43.
A. V. Ruban and M. Dehghani, Phys Rev B 94, 104111 (2016).
44.
C. Wolverton and D. de Fontaine, Phys Rev B 49, 8627 (1994).
45.
R. Idczak, R. Konieczny, and J. Chojcan, Acta Phys Pol A 129 (2016).
46.
J. M. Cowley, J Appl Phys 21, 24 (1950).
47.
A. V. Ponomareva, A. V. Ruban, O. Yu. Vekilova, S. I. Simak, and I. A. Abrikosov, Phys Rev B 84, 094422 (2011).
48.
F. Ducastelle and F. Gautier, Journal of Physics F: Metal Physics 6, 2039 (1976).
49.
I. Mirebeau, M. Hennion, and G. Parette, Phys Rev Lett 53, 687 (1984).
50.
R. Idczak, R. Konieczny, and J. Chojcan, Solid State Commun 159 (2013).
51.
O. I. Gorbatov, Y. N. Gornostyrev, A. R. Kuznetsov, and A. V. Ruban, Solid State Phenomena 172–174, 618 (2011).
52.
A. L. Sutton and W. Hume-Rothery, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 46, 1295 (1955).
53.
G. D. Preston, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 13, 419 (1932).
54.
M. Ropo, K. Kokko, and L. Vitos, Phys Rev B 77, 195445 (2008).
55.
E. P. Elsukov, G. N. Konygin, V. A. Barinov, and E. V. Voronina, Journal of Physics: Condensed Matter 4 (1992).
56.
V. Niculescu, T. Litrenta, K. Raj, T. J. Burch, and J. I. Budnick, J Physical Soc Japan 42, 1538 (1977).
57.
A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, J Magn. Magn. Mater. 67, 65 (1987).
58.
M. Rahaman, B. Johansson, and A. V. Ruban, Phys Rev B 89, 064103 (2014).
59.
G. R. Speich, A. J. Schwoeble, and W. C. Leslie, Metallurgical Transactions 3, 2031 (1972).
60.
F. Mouhat and F.-X. Coudert, Phys Rev B 90, 224104 (2014).
61.
S. F. Pugh, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954).
62.
J. Lee, T. Kim, I. S. Hwang, R. G. Ballinger, and J. H. Kim, Int. Conf. Fast React. Relat. Fuel Cycles 1 (2017).
63.
R. Idczak, R. Konieczny, T. Pikula, and Z. Surowiec, Corrosion 75 (2019)..