Home / Publications / REGIMES OF ELECTRONIC TRANSPORT IN DOPED InAs NANOWIRE

REGIMES OF ELECTRONIC TRANSPORT IN DOPED InAs NANOWIRE

A. A. Zhukov 1 *
A. A. Zhukov
I. E. Batov 1, 2
I. E. Batov
2 Faculty of Physics, National Research University Higher School of Economics
Published 2023-10-30
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Zhukov A. A., Batov I. E. REGIMES OF ELECTRONIC TRANSPORT IN DOPED InAs NANOWIRE // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 3. pp. 427-439.
GOST all authors (up to 50) Copy
Zhukov A. A., Batov I. E. REGIMES OF ELECTRONIC TRANSPORT IN DOPED InAs NANOWIRE // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 3. pp. 427-439.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240312e7
UR - https://jetp.colab.ws/publications/10.31857/S00444510240312e7
TI - REGIMES OF ELECTRONIC TRANSPORT IN DOPED InAs NANOWIRE
T2 - Journal of Experimental and Theoretical Physics
AU - Zhukov, A. A.
AU - Batov, I. E.
PY - 2023
DA - 2023/10/30
PB - Nauka Publishers
SP - 427-439
IS - 3
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Zhukov,
author = {A. A. Zhukov and I. E. Batov},
title = {REGIMES OF ELECTRONIC TRANSPORT IN DOPED InAs NANOWIRE},
journal = {Journal of Experimental and Theoretical Physics},
year = {2023},
volume = {165},
publisher = {Nauka Publishers},
month = {Oct},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240312e7},
number = {3},
pages = {427--439},
doi = {10.31857/S00444510240312e7}
}
MLA
Cite this
MLA Copy
Zhukov, A. A., and I. E. Batov. “REGIMES OF ELECTRONIC TRANSPORT IN DOPED InAs NANOWIRE.” Journal of Experimental and Theoretical Physics, vol. 165, no. 3, Oct. 2023, pp. 427-439. https://jetp.colab.ws/publications/10.31857/S00444510240312e7.
Views / Downloads
6 / 70

Keywords

mesoscopics
Scanning gate microscopy
semiconducting nanowires

Abstract

We report on the low temperature measurements of the magnetotransport in Si-doped InAs quantum wire in the presence of a charged tip of an atomic force microscope serving as a mobile gate, i.e. scanning gate microscopy (SGM). By altering the carrier concentration with back gate voltage, we transfer the wire through several transport regimes: from residual Coulomb blockade to nonlinear resonance regime, followed by linear resonance regime and, finally, to almost homogeneous diffusion regime. We demonstrate direct relations between patterns measured with scanning gate microscopy and spectra of universal conductance fluctuations in the dependence of conductance on magnetic field (R-1(B)). Additionally, a clear sign of fractal behavior of R-1(B) curve is observed for non-linear and linear resonance transport regimes.

The bibliography includes 42 references.

[1-42]

References

1.
S. Datta, “Electronic transport in mesoscopic systems”, (Cambridge University Press, 1995).
2.
B.L. Altshuler and A.G. Aronov in “Electron-Electron Interactions in Disordered Conductors”, Ed. by A.J. Efros and M. Pollack (Elsevier Science, North-Holland, 1985).
3.
A.A. Zhukov, JETP 134, 95-102 (2022).
4.
Y. Imry, “Introduction to Mesoscopic Physics” (Oxford University Press, Oxford 1997).
5.
B.L . Altshuler, Pisma Zh. Eksp. Teor. Fiz. 41,530-533 (1985); JETP Lett. 41, 648-651 (1985).
6.
P.A. Lee, A. D. Stone and H. Fukuyama, Phys. Rev. В 35, 1039-70 (1987).
7.
C.W.J. Beenakker and H. van Houten, Phys. Rev. В 37, 6544 (1988).
8.
R. Ketzmerick, Phys. Rev. В 54, 10841 (1996).
9.
В.В. Mandelbrot, «The Fractal Geometry of Nature» (Freeman, San Francisco, 1982).
10.
M. Jannsen, International Journal of Modern Physics В 08, 943-984 (1994).
11.
F. Evers and A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
12.
H. Hegger, B. Huckestein, K. Hecker, M. Janssen, A. Freimuth, G. Reckziegel, and R. Tuzinski, Phys. Rev. Lett. 77, 3885 (1996).
13.
C.A. Marlow, R.P. Taylor, T. P. Martin, B. C. Scannell, H. Linke, M.S. Fairbanks, G. D.R. Hall, I. Shorubalko, L. Samuelson, T.M. Fromhold, C. V. Brown, B. Hackens, S. Faniel, C. Gustin, V. Bayot, X. Wallart, S. Bollaert, and A. Сарру, Phys Rev В 73, 195318 (2006).
14.
K.R. Amin, S. S. Ray, N. Pal et al. , Commun Phys 1, 1 (2018).
15.
S. Wirths, K. Weis, A. Winden, K. Sladek, Ch. Volk, S. Alagha, T. E. Weirich, M. von der Ahe, H. Hardtdegen, H. Luth, N. Demarina, D. Grützmacher, and Th. Schapers, J. Appl. Phys. 110, 053709 (2011).
16.
M. Akabori, K. Sladek, H. Hardtdegen, Th. Schapers, and D. Grützmacher, J. Cryst. Growth 311, 3813 (2009).
17.
A.A. Zhukov, Instrum. Exp. Tech. 51, 130-134 (2008 ).
18.
K. Weis, St. Wirths, A. Winden, K. Sladek, H. Hardtdegen, H. Luth, D. Grützmacher, and Th. Schapers, Nanotechnology 25, 135203 (2014).
19.
O. Wunnicke, Appl. Phys. Lett. 89, 083102 (2006)
20.
V.F. Gantmakher, “Electrons and Disorder in Solids”, (Oxford University Press, 2005).
21.
M.T. Woodside and P.L. McEuen, Science 296, 1098 (2002).
22.
A.A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Schapers, J. Phys. Condens. Matter 26, 165304 (2014).
23.
A.C. Bleszynski, F. A. Zwanenburg, R. M. Westervelt, A. L. Roest, E. P.A. M. Bakkers, and L.P. Kouwenhoven, Nano Lett. 7, 2559-2562 (2005).
24.
S. Dhara, H. S. Solanki, V. Singh, A. Narayanan, P. Chaudhari, M. Gokhale, A. Bhattacharya, and M.M. Deshmukh, Phys. Rev. В 79, 121311(R) (2009).
25.
P. Roulleau, T. Choi, S. Riedi, T. Heinzel, I. Shorubalko, T. Ihn, and K. Ensslin, Phys. Rev. В 81, 155449 (2010).
26.
Ch. Blomers, M. I. Lepsa, M. Luysberg, D. Grützmacher, H. Liith, and Th. Schapers, Nano Lett. 11, 3550-3556 (2011).
27.
E.E. Boyd, K. Storm, L. Samuelson, and R.M. Westervelt, Nanotechnology 22, 185201 (2011).
28.
L.B. Wang, J. K. Guo, N. Kang, D. Pan, S. Li, D. Fan, J. Zhao, and H.Q. Xu, Appl. Phys. Lett. 106, 173105 (2015).
29.
K. Takase, Y. Ashikawa, G. Zhang, K. Tateno, and S. Sasaki, Scientific Reports 7, 930 (2017).
30.
D. Liang, J. Du, and X.P.A. Gao, Phys. Rev. В 81, 153304 (2010).
31.
A. Makarovski, J. Liu, and G. Finkelstein, Phys. Rev. Lett. 99, 066801 (2007).
32.
L.B. Wang, D. Pan, G. Y. Huang, J. Zhao, N. Kang, and H.Q. Xu, Nanotechnology 30, 124001 (2019).
33.
H. Luth, Ch. Blomers, Th. Richter, J. Wensorra, S. Estevez Hernandez, G. Petersen, M. Lepsa, Th. Schapers, M. Marso, M. Indlekofer, R. Calarco, R. Demarina, and D. Grutzmacher, Phys. Status Solidi C 7, 386-389 (2010).
34.
H. Haucke et al., Phys. Rev. В 41, 12454 (1990).
35.
A.A. Zhukov et al., JETP 115, 1062 (2012).
36.
A.A. Zhukov et al., JETP 116, 138 (2013).
37.
A.A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Schapers, J. Phys. Condens. Matter 26, 165304 (2014)..
38.
B.L. Altshuler, Y. Gefen, A. Kamenev, and L.S. Levitov, Phys. Rev. Lett. 78, 2803 (1997).
39.
A.D. Mirlin and Y.V. Fyodorov, Phys. Rev. В 56, 13393 (1997).
40.
B.L. Altshuler, V. E. Kravtsov, and I.V. Lerner, JETP Lett. 45, 199 (1987).
41.
B.A. Muzykantskii and D.E. Khmelnitskii, Phys. Rev. В 51, 5480 (1995).
42.
A.D. Mirlin, JETP Lett. 62, 603 (1995).