Home / Publications / TWO STAGES IN THE FORMATION OF THE BRANCHING STRUCTURE OF A DECIDUOUS TREE

TWO STAGES IN THE FORMATION OF THE BRANCHING STRUCTURE OF A DECIDUOUS TREE

S. V. Grigoriev 1, 2 *
S. V. Grigoriev
O.D. Shnyrkov 1, 2
O.D. Shnyrkov
K.A. Pshenichnyi 1
K.A. Pshenichnyi
E. G. Iashina 1, 2
E. G. Iashina
1 Petersburg Nuclear Physics Institute, NRC “Kurchatov institute”
2 Saint-Petersburg State University
Published 2023-08-30
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Grigoriev S. V. et al. TWO STAGES IN THE FORMATION OF THE BRANCHING STRUCTURE OF A DECIDUOUS TREE // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 3. pp. 440-455.
GOST all authors (up to 50) Copy
Grigoriev S. V., Shnyrkov O., Pshenichnyi K., Iashina E. G. TWO STAGES IN THE FORMATION OF THE BRANCHING STRUCTURE OF A DECIDUOUS TREE // Journal of Experimental and Theoretical Physics. 2023. Vol. 165. No. 3. pp. 440-455.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240313e1
UR - https://jetp.colab.ws/publications/10.31857/S00444510240313e1
TI - TWO STAGES IN THE FORMATION OF THE BRANCHING STRUCTURE OF A DECIDUOUS TREE
T2 - Journal of Experimental and Theoretical Physics
AU - Grigoriev, S. V.
AU - Shnyrkov, O.D.
AU - Pshenichnyi, K.A.
AU - Iashina, E. G.
PY - 2023
DA - 2023/08/30
PB - Nauka Publishers
SP - 440-455
IS - 3
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Grigoriev,
author = {S. V. Grigoriev and O.D. Shnyrkov and K.A. Pshenichnyi and E. G. Iashina},
title = {TWO STAGES IN THE FORMATION OF THE BRANCHING STRUCTURE OF A DECIDUOUS TREE},
journal = {Journal of Experimental and Theoretical Physics},
year = {2023},
volume = {165},
publisher = {Nauka Publishers},
month = {Aug},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240313e1},
number = {3},
pages = {440--455},
doi = {10.31857/S00444510240313e1}
}
MLA
Cite this
MLA Copy
Grigoriev, S. V., et al. “TWO STAGES IN THE FORMATION OF THE BRANCHING STRUCTURE OF A DECIDUOUS TREE.” Journal of Experimental and Theoretical Physics, vol. 165, no. 3, Aug. 2023, pp. 440-455. https://jetp.colab.ws/publications/10.31857/S00444510240313e1.
Views / Downloads
3 / 12

Keywords

Fourier analysis
Logarithmic fractal
the branching structure of deciduous trees

Abstract

Fractal properties in the formation of the branching structure of deciduous trees have been studied by numerical Fourier analysis. It is shown that the lower levels of branching of adult trees are formed obeying the law of the logarithmic fractal in two-dimensional space, according to which the surface area of the lower branch is equal to the sum of the surface areas of the branches after its branching, i.e. the law of conservation of area when scaling is fulfilled. The structure of branches at the upper levels of branching obeys the law of the logarithmic fractal in three-dimensional space, i.e. the law of volume conservation during scaling, which is natural, since living tissue occupies completely an young branch, and not only its surface. A mathematical model is proposed that generalizes the concepts of a logarithmic fractal on the surface for adult branches and a logarithmic fractal in volume for young branches. Thus, an integral fractal concept of the growth and branching structure of deciduous trees is constructed.

The bibliography includes 45 references.

[1-45]

References

1.
B.Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1983).
2.
H.O. Peitgen, P. H. Richter, The Beauty of Fractals, Springer, Berlin (1986).
3.
E Feder, Fractals, Mir, Moscow (1991).
4.
V.C. Balkhanov, Yu.B. Bashkuev, Modeling of lightning discharges with fractal geometry, Journal of Technical Physics, 82 (12), 126 (2012).
5.
A.G. Bershadsky, Fractal structure of turbulent vortices, JETP, 96 (2), 625 (1989).
6.
Fractals in Biology and Medicine, Edited by T. F. Nonnenmacher, G. A. Losa, E. R. Weibel, Birkhauser Verlag, Basel, (1994).
7.
Fractals in Biology and Medicine, Volume II, Edited by G. Losa, T. F. Nonnenmacher, D. Merlini & E. R. Weibel, Birkhauser Verlag, Basel (1998)
8.
Fractals in Biology and Medicine, Volume III, Edited by G. Losa, D. Merlini, T. F. Nonnenmacher & E. R. Weibel, Birkhauser Verlag, Basel (2002).
9.
Fractals in Biology and Medicine, Volume VI, Edited by G. Losa, D. Merlini, T. F. Nonnenmacher & E. R. Weibel, Birkhauser Verlag, Basel (2005).
10.
L.S. Liebovitch, Fractals and Chaos Simplified for the Life Sciences, Oxford University Press, New York (1998).
11.
I.C. Andronache, H. Ahammer, H. F. Jelineck, D. Peptenatu, A.-M. Ciobotaru, C. C. Draghici, R. D. Pintilii, A. G. Simion, C. Teodorescu, Fractal analysis for studying the evolution of forests, Chaos, Solitons and Fractals, 91, 310 (2016).
12.
A.I. Gurtsev, Yu.L. Tselniker, Fractal structure of a tree branch, Siberian Ecological Journal, 4, 431 (1999).
13.
J.P. Richter, R. C. Bell, The Notebooks of Leonardo da Vinci, Dover, New York (1970).
14.
K. Shinozaki, K. Yoda, K. Hozumi and T.Kira, A quantitative analysis of plant form-the pipe model theory I. Basic analyses., Jap. J. Ecol., 14, 97 (1964).
15.
Th. A. McMahon, R. E. Kronauer, J. Theor Biol., 59, Issue 2, 443 (1976).
16.
G.B. West, J. H. Brown, B. J. Enquist, A general model for the origin of allometric scaling laws in biology, Science, 276, 122 (1997).
17.
G.B. West, J. H. Brown, B. J. Enquist, The fourth dimension of life: fractal geometry and allometric scaling of organisms, Science, 284, 1677 (1999).
18.
G.B. West, B. J. Enquist, and J.H. Brown, A General Quantitative Theory of Forest Structure and Dynamics, PNAS, 106 (17), 7040 (2009).
19.
F. Simini, T. Anfodillo, M. Carrer, J. R. Banavar, A. Maritan, Self-similarity and scaling in forest communities, PNAS, 107 (17) 7658 (2010).
20.
L. Kocillari, M. E. Olson, S. Suweis, et al., The Widened Pipe Model of plant hydraulic evolution, PNAS, 118 (22), e2100314118 (2021).
21.
R. Lehnebach, R. Beyer, V. Letort and P. Heuret, The pipe model theory half a century on: a review, Annals of Botany, 121, 773 (2018).
22.
C. Eloy, Leonardo’s Rule, Self-Similarity, and Wind-Induced Stresses in Trees, Phys. Rev. Lett., 107, 258101 (2011).
23.
R. Minamino, M. Tateno, Tree Branching: Leonardo da Vinci’s Rule versus Biomechanical Models, PLoS ONE, 9 (4), e93535 (2014).
24.
E. Nikinmaa, Analyses of the growth of Scots pine: matching structure with function, Acta Forestalia Fennica, 235, 7681 (1992).
25.
K. Sone, K. Noguchi, I. Terashima, Dependency of branch diameter growth in young Acer trees on light availability and shoot elongation, Tree Physiology, 25, 39 (2005).
26.
K. Sone, A. A. Suzuki, S. Miyazawa, K. Noguchi, T. Terashima, Maintenance mechanisms of the pipe model relationship and Leonardo da Vinci’s rule in the branching architecture of Acer rufinerve trees, Journal of Plant Research, 122, 41 (2009).
27.
Yu.L. Tselniker, Spruce crown structure, Forestry, 4, 35 (1994).
28.
Yu.L. Tselniker, M. D. Korzukhin, B. B. Zeide, Morphological and physiological studies of tree crowns, World of Urania, Moscow (2000).
29.
S. V. Grigoriev, O. D. Shnyrkov, P. M. Pustovoit, E. G. Iashina, and K. A. Pshenichnyi, Experimental evidence for logarithmic fractal structure of botanical trees, Phys. Rev. E, 105, 044412 (2022).
30.
H.D. Bale and P.W. Schmidt, Phys. Rev. Lett., 53, 596 (1984).
31.
J. Teixeira, Small-angle scattering by fractal systems, J. App. Crystallogr, 21, 781 (1988).
32.
Po-zen Wong and Alan J. Bray, Porod scattering from fractal surfaces, Phys. Rev. Lett., 60, 1344 (1988).
33.
E.G. Yashina, S. V. Grigoriev, Small-angle neutron scattering on fractal objects, Surface. X- ray, synchrotron and neutron research, 9, 5 (2017).
34.
R. Zwiggelaar, C. R. Bull, Optical determination of fractal dimensions using Fourier transforms, Optical Engineering, 34 (5), 1325 (1995).
35.
D.A. Zimnyakov, V. V. Tuchin, Fractality of speckle intensity fluctuations, Applied Optics, 35 (22), 4325 (1996).
36.
C. Allain, M. Cloitre, Optical diffraction on fractals, Phys.Rev.B., 33 (5), 3566 (1986).
37.
J. Goodman, Introduction to Fourier Optics, Mir, Moscow (1970).
38.
A.N. Matveev, Optics, Higher school, Moscow (1985).
39.
J. O. Indekeu and G. Fleerackers, Logarithmic fractals and hierarchical deposition of debris, Physica A, 261, 294 (1998).
40.
P. M. Pustovoit, E. G. Yashina, K. A. Pshenichny, S. V. Grigoriev, Classification of fractal and non-fractal objects in two-dimensional space, Surface. X-ray, synchrotron and neutron research, 12, 3 (2020).
41.
A. A. Zinchik, Ya. B. Muzychenko, A. V. Smirnov, S. K. Stafeev, Calculation of the fractal dimension of regular fractals from the diffraction pattern in the far zone, Scientific and technical bulletin of SPbU ITMO, 60 (2), 17 (2009).
42.
S.V. Grigoriev, O. D. Shnyrkov, K. A. Pshenichny, P. M. Pustovoit, E. G. Yashina, Model of fractal organization of chromatin in two-dimensional space, JETP, 163 (3), 428 (2023).
43.
https://github.com/tre3k/fractal
44.
I.G. Serebryakov, Ecological morphology of plants. Life forms of angiosperms and conifers, Higher school, Moscow, (1962).
45.
L. Teia, Anatomy of the Pythagoras’ tree, Australian Senior Mathematics Journal, 30 (2), 38 (2016).