Home / Publications / NUCLEATION IN A NON-IDEAL RAPIDLY NONDINN VAPOR 

NUCLEATION IN A NON-IDEAL RAPIDLY NONDINN VAPOR 

E. E. Perevoshchikov 1
E. E. Perevoshchikov
D. I. Zhukhovitskii 1
D. I. Zhukhovitskii
Published 2024-01-01
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Perevoshchikov E. E., Zhukhovitskii D. I. NUCLEATION IN A NON-IDEAL RAPIDLY NONDINN VAPOR // Journal of Experimental and Theoretical Physics. 2024. Vol. 165. No. 1. pp. 69-83.
GOST all authors (up to 50) Copy
Perevoshchikov E. E., Zhukhovitskii D. I. NUCLEATION IN A NON-IDEAL RAPIDLY NONDINN VAPOR // Journal of Experimental and Theoretical Physics. 2024. Vol. 165. No. 1. pp. 69-83.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.31857/S00444510240108e1
UR - https://jetp.colab.ws/publications/10.31857/S00444510240108e1
TI - NUCLEATION IN A NON-IDEAL RAPIDLY NONDINN VAPOR
T2 - Journal of Experimental and Theoretical Physics
AU - Perevoshchikov, E. E.
AU - Zhukhovitskii, D. I.
PY - 2024
DA - 2024/01/01
PB - Nauka Publishers
SP - 69-83
IS - 1
VL - 165
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Perevoshchikov,
author = {E. E. Perevoshchikov and D. I. Zhukhovitskii},
title = {NUCLEATION IN A NON-IDEAL RAPIDLY NONDINN VAPOR },
journal = {Journal of Experimental and Theoretical Physics},
year = {2024},
volume = {165},
publisher = {Nauka Publishers},
month = {Jan},
url = {https://jetp.colab.ws/publications/10.31857/S00444510240108e1},
number = {1},
pages = {69--83},
doi = {10.31857/S00444510240108e1}
}
MLA
Cite this
MLA Copy
Perevoshchikov, E. E., and D. I. Zhukhovitskii. “NUCLEATION IN A NON-IDEAL RAPIDLY NONDINN VAPOR .” Journal of Experimental and Theoretical Physics, vol. 165, no. 1, Jan. 2024, pp. 69-83. https://jetp.colab.ws/publications/10.31857/S00444510240108e1.
Views / Downloads
22 / 22

Abstract

The problem of non-stationary vapor-liquid nucleation is solved at a constant number of particles and a fixed cooling rate. An analytical approach to solving kinetic equations is developed, which correctly takes into account both the dependence of the work of cluster formation on its size and the non-ideality of the condensing vapor. Comparison with a similar approach based on the classical model reveals qualitative differences in the results. To assess the correctness of various approaches, simulation of the process under consideration was performed using the molecular dynamics method, the results of which are in qualitative and quantitative agreement with the proposed analytical model and are in much worse agreement with other approaches. Estimates for silicon oxide nucleation indicate that the significant d ifference b etween t he e quation o f s tate of c ondensing v apor and the ideal gas equation may be its universal property.

The bibliography includes 50 references.

[1-50]

References

1.
The CNO free radical and its isomerization in inert-gas matrices
Bondybey V.E., English J.H., Mathews C.W., Contolini R.J.
Chemical Physics Letters, 1981
2.
An efficient laser vaporization source for chemically modified metal clusters characterized by thermodynamics and kinetics
Masubuchi T., Eckhard J.F., Lange K., Visser B., Tschurl M., Heiz U.
Review of Scientific Instruments, 2018
3.
Selected problems of laser ablation theory
Anisimov S.I., Luk'yanchuk B.S.
Physics-Uspekhi, 2002
5.
Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment.
Povarnitsyn M.E., Itina T.E., Levashov P.R., Khishchenko K.V.
Physical Chemistry Chemical Physics, 2013
6.
Energy redistribution between layers in multi-layered target heated by x-ray pulse
Inogamov N.A., Khokhlov V.A., Zhakhovsky V.V., Petrov Y.V.
Journal of Physics: Conference Series, 2018
7.
Yu. P. Raizer, JETP 37, 1741 (1959).
8.
Ya. B. Zeldovich, JETP 12, 525 (1942).
9.
M. Volmer, A. Weber, Z. Phys. Chem. 199, 277 (1926).
11.
Determining the nucleation rate from the dimer growth probability
ter Horst J.H., Kashchiev D.
Journal of Chemical Physics, 2005
14.
Performance of some nucleation theories with a nonsharp droplet-vapor interface
Napari I., Julin J., Vehkamäki H.
Journal of Chemical Physics, 2010
15.
Elastic stresses in crystallization processes in finite domains
Abyzov A.S., Schmelzer J.W., Fokin V.M.
Journal of Non-Crystalline Solids, 2010
16.
G. Wilemski, J. Chem. Phys. 103, 1119 (1995).
17.
R. H. Heist, H. He, J. Chem. Phys. 23, 781 (1994).
18.
Recent developments in the kinetic theory of nucleation
Ruckenstein E., Djikaev Y.S.
Advances in Colloid and Interface Science, 2005
19.
J. D. Gunton, J. Stat. Phys. 95, 903 (1999).
J. D. Gunton, J. Stat. Phys. 95, 903 (1999).
Gunton J.D.
Journal of Statistical Physics, 1999
20.
D. I. Zhukhovitskii, J. Chem. Phys. 101, 5076 (1994).
21.
D. I. Zhukhovitskii, D. I. J. Chem. Phys. 144, 184701 (2016).
22.
D. I. Zhukhovitskii, J. Chem. Phys. 110, 7770 (1999).
23.
D. I. Zhukhovitskii, JETP 109, 839 (1996).
24.
D. I. Zhukhovitskii, JETP 113, 181 (1998).
25.
D. I. Zhukhovitskii, JETP 121, 396 (2002).
26.
D. I. Zhukhovitskii, J. Chem. Phys. 142, 164704 (2015).
27.
D. I. Zhukhovitskii, V. V. Zhakhovsky, J. Chem. Phys. 152, 224705 (2020).
28.
Homogeneous nucleation and the Ostwald step rule
Rein ten Wolde P., Frenkel D.
Physical Chemistry Chemical Physics, 1999
30.
K. K. Tanaka, K. Kawamura, H. Tanaka et al, J. Chem. Phys. 122, 184514 (2005).
31.
Nucleation rate isotherms of argon from molecular dynamics simulations
Wedekind J., Wölk J., Reguera D., Strey R.
Journal of Chemical Physics, 2007
32.
Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules
Tanaka K.K., Tanaka H., Yamamoto T., Kawamura K.
Journal of Chemical Physics, 2011
33.
Cluster sizes in direct and indirect molecular dynamics simulations of nucleation
Napari I., Julin J., Vehkamäki H.
Journal of Chemical Physics, 2009
34.
Crystal nucleation rate isotherms in Lennard-Jones liquids
Baidakov V.G., Tipeev A.O., Bobrov K.S., Ionov G.V.
Journal of Chemical Physics, 2010
35.
J. Diemand, R. Ang´elil, K. K. Tanaka et al, J. Chem. Phys. 139, 074309 ( 2013).
36.
K. K. Tanaka, J. Diemand, R. Ang´elil et al, J. Chem. Phys. 140, 194310 ( 2014).
37.
R. Ang´elil, J. Diemand, K. K. Tanaka et al, J. Chem. Phys. 143, 064507 ( 2015).
38.
K. J. Oh, X. C. Zeng, J. Chem. Phys. 114, 2681 (2001).
39.
Monte Carlo simulations of critical cluster sizes and nucleation rates of water
Merikanto J., Vehkamäki H., Zapadinsky E.
Journal of Chemical Physics, 2004
41.
Merikanto J., Lauri A., Zapadinsky E., Vehkamäki H.
2007
42.
D. I. Zhukhovitskii, A. G. Khrapak, I. T. Yakubov, TVT 21, 982 (1983).D. I. Zhukhovitskii, A. G. Khrapak, I. T. Yakubov, TVT 21, 982 (1983).
43.
D. I. Zhukhovitskii, A. G. Khrapak, I. T. Yakubov, TVT 21, 1197 (1983).
44.
J. L. Katz, M. Blander, J. Colloid Interface Sci. 42, 496 (1973).496 (1973).
46.
W. Band, J. Chem. Phys. 7, 324 (1939).
47.
W. Band, J. Chem. Phys. 7, 927 (1939).
48.
D. I. Zhukhovitskii, Journal of Physical Chemistry, 67, 1962 (1993).
49.
A. P. Thompson, H. M. Aktulga, R. Berger et al., Comp. Phys. Comm. 271, 108171 (2022).
50.
Properties of a liquid–gas interface at high-rate evaporation
Anisimov S.I., Dunikov D.O., Zhakhovskii V.V., Malyshenko S.P.
Journal of Chemical Physics, 1999